I have a dataset with an irregular time interval, and I am trying to visualize it as a time series data and predict for 2019. I wish to know how can I convert it in R to 'ts' and what would be the frequency of the data is available at irregular time (year) interval? My data look like this:(This is an extracted part, the complete data set includes 2102 observations)
structure(list(Year = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("1993",
"1999", "2006", "2011", "2016"), class = "factor"), Region = c("South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "North", "North", "North", "North", "North",
"North", "North", "North", "North", "North", "North", "North",
"North", "North", "North", "North", "East", "East", "East", "East",
"East", "East", "North", "North", "North", "North", "North",
"North", "North", "North", "North", "North", "North", "South",
"South", "South", "South", "West", "West", "West", "West", "West",
"West", "West"), statename = c("Andhra Pradesh", "Andhra Pradesh",
"Andhra Pradesh", "Andhra Pradesh", "Andhra Pradesh", "Andhra Pradesh",
"Andhra Pradesh", "Andhra Pradesh", "Andhra Pradesh", "Andhra Pradesh",
"Andhra Pradesh", "Andhra Pradesh", "Andhra Pradesh", "Andhra Pradesh",
"Andhra Pradesh", "Andhra Pradesh", "Andhra Pradesh", "Andhra Pradesh",
"Andhra Pradesh", "Andhra Pradesh", "Andhra Pradesh", "Uttarakhand",
"Haryana", "NCT of Delhi", "Rajasthan", "uttar Pradesh", "Bihar",
"Sikkim", "Arunachal Pradesh", "Nagaland", "Manipur", "Mizoram",
"Bihar", "Bihar", "Bihar", "Bihar", "Bihar", "Bihar", "Bihar",
"Bihar", "Bihar", "Bihar", "Bihar", "KERALA", "KERALA", "KERALA",
"LAKSHADWEEP", "MADHYA PRADESH", "MADHYA PRADESH", "MADHYA PRADESH",
"MADHYA PRADESH", "MADHYA PRADESH", "MADHYA PRADESH", "MADHYA PRADESH"
), statecode = c(28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 32,
32, 32, 31, 23, 23, 23, 23, 23, 23, 23), disctrictcode = c(1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 8, 9, 10, 11, 12, 13, 14, 15, 17,
18, 20, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 218, 219,
220, 221, 222, 223, 224, 225, 226, 227, 228, 601, 594, 590, 587,
465, 461, 459, 457, 441, 447, 420), LPG = c(1.5625, 1.79640718562874,
2.40963855421687, 0.609756097560976, 5.76923076923077, 19.6319018404908,
5.07246376811594, 1.05263157894737, 1.69491525423729, 3.2, 5.94059405940594,
1.11111111111111, 5.23255813953488, 8, 4.6875, NA, 1.08108108108108,
5, 4.54545454545455, 1.5748031496063, 4.76190476190476, 18.2117388919364,
10.1745936183022, 55.607476635514, 2.84514925373134, 3.67709936719685,
2.55157437567861, 29.6979865771812, 16.6825548141087, 8.89787664307381,
22.8630278063852, 35.2459016393443, 16.0183066361556, 11.5853658536585,
14.9032992036405, 11.4190687361419, 11.9521912350598, 10.4426787741203,
10.2941176470588, 8.53658536585366, 14.2228739002933, 10.6060606060606,
7.45098039215686, 25.0891561083135, 35.0948454610251, 11.2079289927582,
2.85374554102259, 1.94829277137229, 1.83006535947712, 2.22847511653655,
1.54357439899654, 3.90050051315975, 2.78252669830342, 1.60864503942542
)), row.names = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 388L,
389L, 390L, 391L, 392L, 393L, 394L, 395L, 396L, 397L, 398L, 810L,
811L, 812L, 813L, 814L, 815L, 816L, 817L, 818L, 819L, 820L, 910L,
911L, 912L, 913L, 914L, 915L, 916L, 917L, 918L, 919L, 920L, 1740L,
1741L, 1742L, 1743L, 1744L, 1745L, 1746L, 1747L, 1748L, 1749L,
1750L), class = "data.frame")