8

I wanted to find out the correct naming convention when referring to individual preprocessor included in ColumnTransformer (which is part of a pipeline) in param_grid for grid_search.

Environment & sample data:

import seaborn as sns
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder, KBinsDiscretizer, MinMaxScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression

df = sns.load_dataset('titanic')[['survived', 'age', 'embarked']]
X_train, X_test, y_train, y_test = train_test_split(df.drop(columns='survived'), df['survived'], test_size=0.2, 
                                                    random_state=123)

Pipeline:

num = ['age']
cat = ['embarked']

num_transformer = Pipeline(steps=[('imputer', SimpleImputer()), 
                                  ('discritiser', KBinsDiscretizer(encode='ordinal', strategy='uniform')),
                                  ('scaler', MinMaxScaler())])

cat_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
                                  ('onehot', OneHotEncoder(handle_unknown='ignore'))])

preprocessor = ColumnTransformer(transformers=[('num', num_transformer, num),
                                               ('cat', cat_transformer, cat)])

pipe = Pipeline(steps=[('preprocessor', preprocessor),
                       ('classiffier', LogisticRegression(random_state=1, max_iter=10000))])

param_grid = dict([SOMETHING]imputer__strategy = ['mean', 'median'],
                  [SOMETHING]discritiser__nbins = range(5,10),
                  classiffier__C = [0.1, 10, 100],
                  classiffier__solver = ['liblinear', 'saga'])
grid_search = GridSearchCV(pipe, param_grid=param_grid, cv=10)
grid_search.fit(X_train, y_train)

Basically, what should I write instead of [SOMETHING] in my code?

I have looked at this answer which answered the question for make_pipeline - so using the similar idea, I tried 'preprocessor__num__', 'preprocessor__num_', 'pipeline__num__', 'pipeline__num_' - no luck so far.

Thank you

1 Answers1

13

You were close, the correct way to declare it is like this:

param_grid = {'preprocessor__num__imputer__strategy' : ['mean', 'median'],
              'preprocessor__num__discritiser__n_bins' : range(5,10),
              'classiffier__C' : [0.1, 10, 100],
              'classiffier__solver' : ['liblinear', 'saga']}

Here is the full code:

import seaborn as sns
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder, KBinsDiscretizer, MinMaxScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression

df = sns.load_dataset('titanic')[['survived', 'age', 'embarked']]
X_train, X_test, y_train, y_test = train_test_split(df.drop(columns='survived'), df['survived'], test_size=0.2, 
                                                    random_state=123)
num = ['age']
cat = ['embarked']

num_transformer = Pipeline(steps=[('imputer', SimpleImputer()), 
                                  ('discritiser', KBinsDiscretizer(encode='ordinal', strategy='uniform')),
                                  ('scaler', MinMaxScaler())])

cat_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
                                  ('onehot', OneHotEncoder(handle_unknown='ignore'))])

preprocessor = ColumnTransformer(transformers=[('num', num_transformer, num),
                                               ('cat', cat_transformer, cat)])

pipe = Pipeline(steps=[('preprocessor', preprocessor),
                       ('classiffier', LogisticRegression(random_state=1, max_iter=10000))])

param_grid = {'preprocessor__num__imputer__strategy' : ['mean', 'median'],
              'preprocessor__num__discritiser__n_bins' : range(5,10),
              'classiffier__C' : [0.1, 10, 100],
              'classiffier__solver' : ['liblinear', 'saga']}
grid_search = GridSearchCV(pipe, param_grid=param_grid, cv=10)
grid_search.fit(X_train, y_train)

One simply way to check the available parameter names is like this:

print(pipe.get_params().keys())

This will print out the list of all the available parameters which you can copy directly into your params dictionary.

I have written a utility function which you can use to check if a parameter exist in a pipeline/classifier by simply passing in a keyword.

def check_params_exist(esitmator, params_keyword):
    all_params = esitmator.get_params().keys()
    available_params = [x for x in all_params if params_keyword in x]
    if len(available_params)==0:
        return "No matching params found!"
    else:
        return available_params

Now if you are unsure of the exact name, just pass imputer as the keyword

print(check_params_exist(pipe, 'imputer'))

This will print the following list:

['preprocessor__num__imputer',
 'preprocessor__num__imputer__add_indicator',
 'preprocessor__num__imputer__copy',
 'preprocessor__num__imputer__fill_value',
 'preprocessor__num__imputer__missing_values',
 'preprocessor__num__imputer__strategy',
 'preprocessor__num__imputer__verbose',
 'preprocessor__cat__imputer',
 'preprocessor__cat__imputer__add_indicator',
 'preprocessor__cat__imputer__copy',
 'preprocessor__cat__imputer__fill_value',
 'preprocessor__cat__imputer__missing_values',
 'preprocessor__cat__imputer__strategy',
 'preprocessor__cat__imputer__verbose']
Gambit1614
  • 8,547
  • 1
  • 25
  • 51