0. You can group by and get the min, max date from the dataframe and make a sequence, explode it to get the series of dates.
from pyspark.sql.functions import *
from pyspark.sql import Window
w1 = Window.orderBy('date').rowsBetween(Window.unboundedPreceding, Window.currentRow)
w2 = Window.orderBy('date').rowsBetween(Window.currentRow, Window.unboundedFollowing)
df.groupBy().agg(min('date').alias('date_min'), max('date').alias('date_max')) \
.withColumn('date', sequence(to_date('date_min'), to_date('date_max'))) \
.withColumn('date', explode('date')) \
.select('date') \
.join(df, ['date'], 'left') \
.show(10, False)
+----------+-----+
|date |value|
+----------+-----+
|2020-08-01|0 |
|2020-08-02|null |
|2020-08-03|null |
|2020-08-04|null |
|2020-08-05|null |
|2020-08-06|10 |
+----------+-----+
1. Only for your case, and the most simple one.
from pyspark.sql.functions import *
from pyspark.sql import Window
w1 = Window.orderBy('date').rowsBetween(Window.unboundedPreceding, Window.currentRow)
w2 = Window.orderBy('date').rowsBetween(Window.currentRow, Window.unboundedFollowing)
df.withColumn("value_m1", last('value', ignorenulls=True).over(w1)) \
.withColumn("value_p1", first('value', ignorenulls=True).over(w2)) \
.withColumn('value', coalesce(col('value'), expr('value_m1 + value_p1 / 2'))) \
.show(10, False)
+----------+-----+--------+--------+
|date |value|value_m1|value_p1|
+----------+-----+--------+--------+
|2020-08-01|0.0 |0 |0 |
|2020-08-02|5.0 |0 |10 |
|2020-08-03|10.0 |10 |10 |
+----------+-----+--------+--------+
2. A bit improved with arbitrary null
days. For example when the dataframe is given by this,
+----------+-----+
|date |value|
+----------+-----+
|2020-08-01|0 |
|2020-08-02|null |
|2020-08-03|null |
|2020-08-04|null |
|2020-08-05|null |
|2020-08-06|10 |
|2020-08-07|null |
|2020-08-08|null |
+----------+-----+
then the code should be changed as follows:
from pyspark.sql.functions import *
from pyspark.sql import Window
w1 = Window.orderBy('date').rowsBetween(Window.unboundedPreceding, Window.currentRow)
w2 = Window.orderBy('date').rowsBetween(Window.currentRow, Window.unboundedFollowing)
w3 = Window.partitionBy('days_m1').orderBy('date')
w4 = Window.partitionBy('days_p1').orderBy(desc('date'))
df.withColumn("value_m1", last('value', ignorenulls=True).over(w1)) \
.withColumn("value_p1", first('value', ignorenulls=True).over(w2)) \
.withColumn('days_m1', count(when(col('value').isNotNull(), 1)).over(w1)) \
.withColumn('days_p1', count(when(col('value').isNotNull(), 1)).over(w2)) \
.withColumn('days_m1', count(lit(1)).over(w3) - 1) \
.withColumn('days_p1', count(lit(1)).over(w4) - 1) \
.withColumn('value', coalesce(col('value'), expr('(days_p1 * value_m1 + days_m1 * value_p1) / (days_m1 + days_p1)'))) \
.orderBy('date') \
.show(10, False)
+----------+-----+--------+--------+-------+-------+
|date |value|value_m1|value_p1|days_m1|days_p1|
+----------+-----+--------+--------+-------+-------+
|2020-08-01|0.0 |0 |0 |0 |0 |
|2020-08-02|2.0 |0 |10 |1 |4 |
|2020-08-03|4.0 |0 |10 |2 |3 |
|2020-08-04|6.0 |0 |10 |3 |2 |
|2020-08-05|8.0 |0 |10 |4 |1 |
|2020-08-06|10.0 |10 |10 |0 |0 |
|2020-08-07|null |10 |null |1 |1 |
|2020-08-08|null |10 |null |2 |0 |
+----------+-----+--------+--------+-------+-------+