3

I have previously been told that -- for reasons that make complete sense -- one shouldn't run OLS regressions when the outcome variable is binary (i.e. yes/no, true/false, win/loss, etc). However, I often read papers in economics/other social sciences in which researchers run OLS regressions on binary variables and interpret the coefficients just like they would for a continuous outcome variable. A few questions about this:

  1. Why do they not run a logistic regression? Is there any disadvantage/limitation to using logit models? In economics, for example, I very often see papers using OLS regression for binary variable and not logit. Can logit only be used in certain situations?
  2. In general, when can one run an OLS regression on ordinal data? If I have a variable that captures "number of times in a week survey respondent does X", can I - in any circumstance - use it as a dependent variable in a linear regression? I often see this being done in literature as well, even though we're always told in introductory statistics/econometrics that outcome variables in an OLS regression should be continuous.
gtoques
  • 223
  • 2
  • 10

1 Answers1

2
  1. The application of applying OLS to a binary outcome is called Linear Probability Model. Compared to a logistic model, LPM has advantages in terms of implementation and interpretation that make it an appealing option for researchers conducting impact analysis. In LPM, parameters represent mean marginal effects while parameters represent log odds ratio in logistic regression. To calculate the mean marginal effects in logistic regression, we need calculate that derivative for every data point and then calculate the mean of those derivatives. While logistic regression and the LPM usually yield the same expected average impact estimate[1], researchers prefer LPM for estimating treatment impacts.

  2. In general, yes, we can definitely apply OLS to an ordinal outcome. Similar to the previous case, applying OLS to a binary or ordinal outcome result in violations of the assumptions of OLS. However, within econometrics, they believe the practical effect of violating these assumptions is minor and that the simplicity of interpreting an OLS outweighs the technical correctness of an ordered logit or probit model, especially when the ordinal outcome looks quasi-normal.

Reference: [1] Deke, J. (2014). Using the linear probability model to estimate impacts on binary outcomes in randomized controlled trials. Mathematica Policy Research.