My aim is to evaluate the effect of a treatment (on microclimate data) applied to a canopy compared to a control. Therefore I put three data logger in the canopy at 5 sites and each variant ("treatment applied" vs. "control"). Data is averaged every 5 minutes over a period of 217 days. The logged data looks like this:
Timepoint,Time,Celsius(°C),Humidity(%rh),dew point(°C)
1,27/03/2019 17:02:39,23.5,37.5,8.2
2,27/03/2019 17:07:39,23.5,36.5,7.8
3,27/03/2019 17:12:39,23.5,36.5,7.8
4,27/03/2019 17:17:39,24.0,37.5,8.6
5,27/03/2019 17:22:39,23.5,36.0,7.6
6,27/03/2019 17:27:39,23.0,37.0,7.5
7,27/03/2019 17:32:39,22.5,34.5,6.1
8,27/03/2019 17:37:39,22.5,34.5,6.1
Records are sumamrized daily to obtain mean/max/min temperature for each of the 217 days. Regardless of the site I want to determine the effect of the treatment applied and to expose the differences over time.
I was told that Time Series Analysis doesn't work here. I tried to apply linear regression (inspired from this paper: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234436) on the data, but since the control does not affect the treatment I discarded this approach.
So my question is: which method would be the proper way to analyse this microclimatic data in R?