So these are my loss per 75 epochs:
Epoch: 75, loss: 47382825795584.000000
Epoch: 150, loss: 47382825795584.000000
Epoch: 225, loss: 47382825795584.000000
Epoch: 300, loss: 47382825795584.000000
Epoch: 375, loss: 47382825795584.000000
Epoch: 450, loss: 47382825795584.000000
Epoch: 525, loss: 47382825795584.000000
Epoch: 600, loss: 47382825795584.000000
Epoch: 675, loss: 47382825795584.000000
Epoch: 750, loss: 47382825795584.000000
And these are the values from predictions and targets respectively
Predictions: tensor([[ 8109436.0000, 7734814.0000, 8737677.0000, 11230861.0000,
3795826.7500, 3125072.7500, 1699706.1250, 5337285.0000,
3474238.5000]], grad_fn=<TBackward>)
----------------------------------------
Targets: tensor([[ 8111607., 7580798., 8749436., 11183578., 3822811., 3148031.,
2343278., 5360924., 3536146.]])
And this is the accuracy of the first, and second elements inside predictions against the first, and second elements of targets
8109436.0000/8111607*100 #First element
Output: 99.9732358828528
print(7734814.0000/7580798*100) #Second element
Output: 102.03165946381898
So I'm really not sure what is going on. Because I have a large loss there is a 99% accuracy for the first element and 98% accuracy on the second element? I'm not the best at math, so I'm not sure about the last percentage.
Could someone explain if the loss reflects the accuracy?