I have a dataset which looks like this:
location_id ... partner_code product_code value
24275 239 ... AUT 8412 0
24496 239 ... CHN 8412 1000
24742 239 ... DEU 8412 20000
24831 239 ... DNK 8412 4000
25094 239 ... FRA 8412 0
... ... ... ... ... ...
3490121 239 ... KOR 2503 3000
3490152 239 ... MYS 2503 15000
3490398 239 ... CAN 2503 0
3490519 239 ... IND 2503 0
3490597 239 ... SGP 2503 350
I want to aggregate the values of the value
column by the product_code
values, so that for each product code, there is just one value that is a sum of values across all partners, which should look like this:
location_id ... partner_code product_code value
n 239 ... ALL 8412 25000
... ... ... ... ... ...
n 239 ... ALL 2503 18350
I tried using something like: filtered_data = data.groupby('product_code').agg('value')
, which creates an uncallable groupby object.
How can I modify this code to perform the desired aggregation?