A least square algorithm may do the trick, if correctly initialized. A clustering method can be applied to this end.
As an FFT is performed, the signal is depicted as a sum of sine waves. The amplitude of the frequencies may be depicted as resulting from a least square fit on the signal. Hence, if the signal is unevenly sampled, resolving the same least square problem may make sense if the Fourier transform is to be estimated. If applied to a evenly sampled signal, it boils down to the same result.
As your signal is descrete, you may want to fit it as a sum of Dirac combs. It seems more sound to minimize the sum of squared distance to the nearest Dirac of the Dirac comb. This is a non-linear optimization problem where Dirac combs are described by their period and offset. This non-linear least-square problem can be solved by mean of the Levenberg-Marquardt algorithm. Here is an python example making use of the scipy.optimize.leastsq()
function. Moreover, the error on the estimated period and offset can be estimated as depicted in How to compute standard deviation errors with scipy.optimize.least_squares . It is also documented in the documentation of curve_fit()
and Getting standard errors on fitted parameters using the optimize.leastsq method in python
Nevertheless, half the period, or the thrid of the period, ..., would also fit, and multiples of the period are local minima that are to be avoided by a refining the initialization of the Levenberg-Marquardt algorithm. To this end, the differences between times of events can be clustered, the cluster featuring the smallest value being that of the expected period. As proposed in Clustering values by their proximity in python (machine learning?) , the clustering function sklearn.cluster.MeanShift()
is applied.
Notice that the procedure can be extended to multidimentionnal data to look for periodic patterns or mixed periodic patterns featuring different fundamental periods.
import numpy as np
from scipy.optimize import least_squares
from scipy.optimize import leastsq
from sklearn.cluster import MeanShift, estimate_bandwidth
ticks=[0,1.1,1.9,3,3.9,6.1]
import scipy
print scipy.__version__
def crudeEstimate():
# loooking for the period by looking at differences between values :
diffs=np.zeros(((len(ticks))*(len(ticks)-1))/2)
k=0
for i in range(len(ticks)):
for j in range(i):
diffs[k]=ticks[i]-ticks[j]
k=k+1
#see https://stackoverflow.com/questions/18364026/clustering-values-by-their-proximity-in-python-machine-learning
X = np.array(zip(diffs,np.zeros(len(diffs))), dtype=np.float)
bandwidth = estimate_bandwidth(X, quantile=1.0/len(ticks))
ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(X)
labels = ms.labels_
cluster_centers = ms.cluster_centers_
print cluster_centers
labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)
for k in range(n_clusters_):
my_members = labels == k
print "cluster {0}: {1}".format(k, X[my_members, 0])
estimated_period=np.min(cluster_centers[:,0])
return estimated_period
def disttoDiracComb(x):
residual=np.zeros((len(ticks)))
for i in range(len(ticks)):
mindist=np.inf
for j in range(len(x)/2):
offset=x[2*j+1]
period=x[2*j]
#print period, offset
index=np.floor((ticks[i]-offset)/period)
#print 'index', index
currdist=ticks[i]-(index*period+offset)
if currdist>0.5*period:
currdist=period-currdist
index=index+1
#print 'event at ',ticks[i], 'not far from index ',index, '(', currdist, ')'
#currdist=currdist*currdist
#print currdist
if currdist<mindist:
mindist=currdist
residual[i]=mindist
#residual=residual-period*period
#print x, residual
return residual
estimated_period=crudeEstimate()
print 'crude estimate by clustering :',estimated_period
xp=np.array([estimated_period,0.0])
#res_1 = least_squares(disttoDiracComb, xp,method='lm',xtol=1e-15,verbose=1)
p,pcov,infodict,mesg,ier=leastsq(disttoDiracComb, x0=xp,ftol=1e-18, full_output=True)
#print ' p is ',p, 'covariance is ', pcov
# see https://stackoverflow.com/questions/14581358/getting-standard-errors-on-fitted-parameters-using-the-optimize-leastsq-method-i
s_sq = (disttoDiracComb(p)**2).sum()/(len(ticks)-len(p))
pcov=pcov *s_sq
perr = np.sqrt(np.diag(pcov))
#print 'estimated standard deviation on parameter :' , perr
print 'estimated period is ', p[0],' +/- ', 1.96*perr[0]
print 'estimated offset is ', p[1],' +/- ', 1.96*perr[1]
Applied to your sample, it prints :
crude estimate by clustering : 0.975
estimated period is 1.0042857141346768 +/- 0.04035792507868619
estimated offset is -0.011428571139828817 +/- 0.13385206912205957