If you are not bound to ggplot2
and fancy an interactive use: I recommend the timevis
library.
Using your data with the code looks like this:
library(timevis)
library(tidyverse)
df <- tribble(
~ASK_ID, ~START_TIME_date, ~START_TIME_hour, ~STOP_TIME_date, ~STOP_TIME_hour, ~PERSON_ID, ~TASK_GROUP,
3983947, "8/3/20", "13:35", "8/3/20", "13:36", 100, 1,
3983946, "8/3/20", "13:35", "8/3/20", "13:38", 102, 3,
3983945, "8/3/20", "13:32", "8/3/20", "13:34", 102, 1,
3983944, "8/3/20", "13:32", "8/3/20", "13:35", 104, 2,
3983943, "8/3/20", "13:30", "8/3/20", "13:32", 104, 1,
3983942, "8/3/20", "13:29", "8/3/20", "13:30", 104, 6,
3983941, "8/3/20", "13:27", "8/3/20", "13:35", 107, 1,
3983940, "8/3/20", "13:26", "8/3/20", "13:35", 100, 1,
3983939, "8/3/20", "13:26", "8/3/20", "13:35", 103, 4,
3983938, "8/3/20", "13:23", "8/3/20", "13:35", 106, 1,
3983937, "8/3/20", "13:21", "8/3/20", "13:29", 104, 4,
3983936, "8/3/20", "13:20", "8/3/20", "13:32", 102, 1,
3983935, "8/3/20", "13:20", "8/3/20", "13:27", 107, 3,
3983934, "8/3/20", "13:19", "8/3/20", "13:20", 102, 1,
3983933, "8/3/20", "13:19", "8/3/20", "13:26", 100, 5
) %>%
mutate(start_time = as.POSIXct(paste(START_TIME_date, START_TIME_hour)),
stop_time = as.POSIXct(paste(STOP_TIME_date, STOP_TIME_hour)))
time_data <- df %>%
transmute(
id = 1:n(),
content = paste("Task", ASK_ID),
start = start_time,
end = stop_time,
group = PERSON_ID
)
time_data
#> # A tibble: 15 x 5
#> id content start end group
#> <int> <chr> <dttm> <dttm> <dbl>
#> 1 1 Task 3983947 8-03-20 13:35:00 8-03-20 13:36:00 100
#> 2 2 Task 3983946 8-03-20 13:35:00 8-03-20 13:38:00 102
#> 3 3 Task 3983945 8-03-20 13:32:00 8-03-20 13:34:00 102
#> 4 4 Task 3983944 8-03-20 13:32:00 8-03-20 13:35:00 104
#> 5 5 Task 3983943 8-03-20 13:30:00 8-03-20 13:32:00 104
#> 6 6 Task 3983942 8-03-20 13:29:00 8-03-20 13:30:00 104
#> 7 7 Task 3983941 8-03-20 13:27:00 8-03-20 13:35:00 107
#> 8 8 Task 3983940 8-03-20 13:26:00 8-03-20 13:35:00 100
#> 9 9 Task 3983939 8-03-20 13:26:00 8-03-20 13:35:00 103
#> 10 10 Task 3983938 8-03-20 13:23:00 8-03-20 13:35:00 106
#> 11 11 Task 3983937 8-03-20 13:21:00 8-03-20 13:29:00 104
#> 12 12 Task 3983936 8-03-20 13:20:00 8-03-20 13:32:00 102
#> 13 13 Task 3983935 8-03-20 13:20:00 8-03-20 13:27:00 107
#> 14 14 Task 3983934 8-03-20 13:19:00 8-03-20 13:20:00 102
#> 15 15 Task 3983933 8-03-20 13:19:00 8-03-20 13:26:00 100
group_data <- time_data %>%
distinct(group) %>%
mutate(id = group, content = paste("Person", group))
group_data
#> # A tibble: 6 x 3
#> group id content
#> <dbl> <dbl> <chr>
#> 1 100 100 Person 100
#> 2 102 102 Person 102
#> 3 104 104 Person 104
#> 4 107 107 Person 107
#> 5 103 103 Person 103
#> 6 106 106 Person 106
Created on 2020-08-31 by the reprex package (v0.3.0)
timevis(time_data, groups = group_data)
