I have a list of customers, dates and scores:
import pandas as pd
import datetime as dt
import numpy as np
data = pd.DataFrame(
np.array(
[
["A", dt.datetime(2017, 12, 10), 10.0],
["A", dt.datetime(2018, 1, 10), 10.0],
["A", dt.datetime(2018, 1, 15), 11.0],
["A", dt.datetime(2018, 1, 16), 12.0],
["A", dt.datetime(2018, 1, 16), 13.0],
["B", dt.datetime(2018, 1, 16), 10.0],
["A", dt.datetime(2018, 3, 1), 10.0],
]
),
columns=["Customer", "Date", "Score", "Result"],
)
Customer Date Score
0 A 2017-12-10 00:00:00 10
1 A 2018-01-10 00:00:00 10
2 A 2018-01-15 00:00:00 11
3 A 2018-01-16 00:00:00 12
4 A 2018-01-16 00:00:00 13
5 B 2018-01-16 00:00:00 10
6 A 2018-03-01 00:00:00 10
For each customer I would like to calculate the average score for the last 14 days (including today). The result should look like:
Customer Date Score Result
0 A 2017-12-10 00:00:00 10 10
1 A 2018-01-10 00:00:00 10 10
2 A 2018-01-15 00:00:00 11 10.5
3 A 2018-01-16 00:00:00 12 11.5
4 A 2018-01-16 00:00:00 13 11.5
5 B 2018-01-16 00:00:00 10 10
6 A 2018-03-01 00:00:00 10 10
Thanks!!