My code works when none of the dates are missing, but as soon as I encounter 1 missing value, I get an error. What is the best way to account for this so that I retain the missing rows in the final result?
fake_hol = '{"holiday_dt":{"0":"2000-04-23","1":"2001-04-15","2":"2002-03-31","3":"2000-01-01","4":"2000-01-17","5":"2000-05-29","6":"2000-07-04","7":"2000-09-04","8":"2000-10-09","9":"2000-11-11","10":"2000-11-23","11":"2000-11-24","12":"2000-12-25","13":"2000-12-23","14":"2001-01-01","15":"2001-01-15","16":"2001-05-28","17":"2001-07-04","18":"2001-09-03","19":"2001-10-08","20":"2001-11-11","21":"2001-11-22","22":"2001-11-23","23":"2001-12-25","24":"2001-12-22","25":"2002-01-01","26":"2002-01-21","27":"2002-05-27","28":"2002-07-04","29":"2002-09-02","30":"2002-10-14","31":"2002-11-11","32":"2002-11-28","33":"2002-11-29","34":"2002-12-25","35":"2002-12-21"},"holiday":{"0":"Easter","1":"Easter","2":"Easter","3":"New Year\'s Day","4":"Martin Luther King, Jr. Day","5":"Memorial Day","6":"Independence Day","7":"Labor Day","8":"Columbus Day","9":"Veterans Day","10":"Thanksgiving","11":"Black Friday","12":"Christmas Day","13":"Sat Before X-max","14":"New Year\'s Day","15":"Martin Luther King, Jr. Day","16":"Memorial Day","17":"Independence Day","18":"Labor Day","19":"Columbus Day","20":"Veterans Day","21":"Thanksgiving","22":"Black Friday","23":"Christmas Day","24":"Sat Before X-max","25":"New Year\'s Day","26":"Martin Luther King, Jr. Day","27":"Memorial Day","28":"Independence Day","29":"Labor Day","30":"Columbus Day","31":"Veterans Day","32":"Thanksgiving","33":"Black Friday","34":"Christmas Day","35":"Sat Before X-max"}}'
dfA_nomissing = pd.DataFrame({'x1': [3,4,2,4,5,6], 'x2': ['A','Z','G','I','D','H'], 'dt': ['2001-01-23','2001-08-14','2001-04-23','2001-08-08','2001-09-17','2001-11-11'], 'y': [1,1,1,0,1,0]})
dfA_1missing = pd.DataFrame({'x1': [3,4,2,4,5,6], 'x2': ['A','Z','G','I','D','H'], 'dt': ['2001-01-23','','2001-04-23','2001-08-08','2001-09-17','2001-11-11'], 'y': [1,1,1,0,1,0]})
dfB = pd.read_json(fake_hol)
dfA_nomissing
+----+----+------------+---+
| x1 | x2 | dt | y |
+----+----+------------+---+
| 3 | A | 2001-01-23 | 1 |
| 4 | Z | 2001-08-14 | 1 |
| 2 | G | 2001-04-23 | 1 |
| 4 | I | 2001-08-08 | 0 |
| 5 | D | 2001-09-17 | 1 |
| 6 | H | 2001-11-11 | 0 |
+----+----+------------+---+
dfB
+------------+-----------------------------+
| holiday_dt | holiday |
+------------+-----------------------------+
| 2000-04-23 | Easter |
| 2001-04-15 | Easter |
| 2002-03-31 | Easter |
| 2000-01-01 | New Year's Day |
| 2000-01-17 | Martin Luther King, Jr. Day |
| ... | ... |
| 2002-11-11 | Veterans Day |
| 2002-11-28 | Thanksgiving |
| 2002-11-29 | Black Friday |
| 2002-12-25 | Christmas Day |
| 2002-12-21 | Sat Before X-max |
+------------+-----------------------------+
Here is the code which compares the 'dt' column in dfA and adds some time-relative features from dfB.
def add_calendar_cols(dfMain, dfEvents, date_col_list, eventname_col='Name', eventdate_col='Date'):
# dont modify the original for testing purposes
df = dfMain.copy(deep=True)
# convert date cols to datetime
for c in date_col_list:
df[c] = pd.to_datetime(df[c])
dfEvents[eventdate_col] = pd.to_datetime(dfEvents[eventdate_col])
# function that calculates days until next event
def calc_days(df, dfCal, direction, mainjoinkey, eventjoinkey):
s = pd.merge_asof(df.sort_values(mainjoinkey), dfCal.sort_values(eventjoinkey), left_on=mainjoinkey, right_on=eventjoinkey, direction=direction)
s = (s[eventjoinkey] - s[mainjoinkey]).dt.days.abs()
return s
# unique list of events
unique_events = dfEvents[eventname_col].unique().tolist()
# loop in case there are multiple date columns
for dtcol in date_col_list:
# dataframe of unique dates
dfDates = pd.DataFrame(df[dtcol].unique(),columns=[dtcol])
# calc days until the next event
dfDates['until_next'] = calc_days(dfDates, dfEvents, 'forward', dtcol, eventdate_col)
# do the same for each specific event
for e in unique_events:
dfDates[dtcol + '_days_until_' + e] = calc_days(dfDates, dfEvents[dfEvents[eventname_col].eq(e)], 'forward', dtcol, eventdate_col)
# merge everything back to the original dataframe
df = df.merge(dfDates, how='left', left_on=dtcol, right_on=dtcol)
return df
This works:
result = add_calendar_cols(dfA_nomissing, dfB, ['dt'], eventname_col='holiday', eventdate_col='holiday_dt')
This gives me an error ValueError: Merge keys contain null values on left side
result = add_calendar_cols(dfA_1missing, dfB, ['dt'], eventname_col='holiday', eventdate_col='holiday_dt')
<ipython-input-93-67afeca366e9> in calc_days(df, dfCal, direction, mainjoinkey, eventjoinkey)
12 # requires pandas >= 1.1.0
13 def calc_days(df, dfCal, direction, mainjoinkey, eventjoinkey):
---> 14 s = pd.merge_asof(df.sort_values(mainjoinkey), dfCal.sort_values(eventjoinkey), left_on=mainjoinkey, right_on=eventjoinkey, direction=direction)
15 s = (s[eventjoinkey] - s[mainjoinkey]).dt.days.abs()
16 return s