I learned yesterday about np.lib.stride_tricks.as_strided
from one of StackOverflow answers similar to this. This is an awesome trick and not that hard to understand as I expected. Now, if you get it, let's define a function called rolling
that lists all the patterns to check with:
def rolling(a, window):
shape = (a.size - window + 1, window)
strides = (a.itemsize, a.itemsize)
return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
compare_with = [True, False, True]
bool_arr = np.random.choice([True, False], size=15)
paterns = rolling(bool_arr, len(compare_with))
And after that you can calculate indexes of pattern matches as discussed here
idx = np.where(np.all(paterns == compare_with, axis=1))
Sample run:
bool_arr
array([ True, False, True, False, True, True, False, False, False,
False, False, False, True, True, False])
patterns
array([[ True, False, True],
[False, True, False],
[ True, False, True],
[False, True, True],
[ True, True, False],
[ True, False, False],
[False, False, False],
[False, False, False],
[False, False, False],
[False, False, False],
[False, False, True],
[False, True, True],
[ True, True, False]])
idx
(array([ 0, 2, 13], dtype=int64),)