Does it mean the execution of single statement "count++" or "count--"
can be interrupted in the middle and produce unexpected result? What
unexpected results can be gotten?
Just answering to this part: Yes, the execution can be interrupted in the middle of a statement.
Let's imagine a simple case:
class A {
void foo(){
++a;
}
int a = 0;
};
The single statement ++a
is translated in assembly to
mov eax, DWORD PTR [rdi]
add eax, 1
mov DWORD PTR [rdi], eax
which can be seen as
eax = a;
eax += 1;
a = eax;
If foo()
is called on the same instance of A
in 2 different threads (be it on a single core, or multiple cores) you cannot predict what will be the result of the program.
It can behave nicely:
thread 1 > eax = a // eax in thread 1 is equal to 0
thread 1 > eax += 1 // eax in thread 1 is equal to 1
thread 1 > a = eax // a is set to 1
thread 2 > eax = a // eax in thread 2 is equal to 1
thread 2 > eax += 1 // eax in thread 2 is equal to 2
thread 2 > a = eax // a is set to 2
or not:
thread 1 > eax = a // eax in thread 1 is equal to 0
thread 2 > eax = a // eax in thread 2 is equal to 0
thread 2 > eax += 1 // eax in thread 2 is equal to 1
thread 2 > a = eax // a is set to 1
thread 1 > eax += 1 // eax in thread 1 is equal to 1
thread 1 > a = eax // a is set to 1
In a well defined program, N calls to foo()
should result in a == N
.
But calling foo()
on the same instance of A
from multiple threads creates undefined behavior. There is no way to know the value of a
after N calls to foo()
.
It will depend on how you compiled your program, what optimization flags were used, which compiler was used, what was the load of your CPU, the number of core of your CPU,...
NB
class A {
public:
bool check() const { return a == b; }
int get_a() const { return a; }
int get_b() const { return b; }
void foo(){
++a;
++b;
}
private:
int a = 0;
int b = 0;
};
Now we have a class that, for an external observer, keeps a
and b
equal at all time.
The optimizer could optimize this class into:
class A {
public:
bool check() const { return true; }
int get_a() const { return a; }
int get_b() const { return b; }
void foo(){
++a;
++b;
}
private:
int a = 0;
int b = 0;
};
because it does not change the observable behavior of the program.
However if you invoke undefined behavior by calling foo() on the same instance of A from multiple threads, you could end up if a = 3
, b = 2
and check()
still returning true
. Your code has lost its meaning, the program is not doing what it is supposed to and can be doing about anything.
From here you can imagine more complex cases, like if A manages network connections, you can end up sending the data for client #10 to client #6. If your program is running in a factory, you can end up activating the wrong tool.
If you want the definition of undefined behavior you can look here : https://en.cppreference.com/w/cpp/language/ub
and in the C++ standard
For a better understanding of UB you can look for CppCon talks on the topic.