The other answers show the analytical solutions of the equation
k * (k + 1) = n * (n + 1) / 2 Where n is given
The OP needs k to be a whole number, though, and such value may not exist for every chosen n.
We can adapt the Newton's method to solve this equation using only integer arithmetics.
sum_n = n * (n + 1) / 2
k = n
repeat indefinitely // It usually needs only a few iterations, it's O(log(n))
f_k = k * (k + 1)
if f_k == sum_n
k is the solution, exit
if f_k < sum_n
there's no k, exit
k_n = (f_k - sum_n) / (2 * k + 1) // Newton step: f(k)/f'(k)
if k_n == 0
k_n = 1 // Avoid inifinite loop
k = k - k_n;
Here there is a C++ implementation.
We can find all the pairs (n, k) that satisfy the equation for 0 < k < n ≤ N adapting the algorithm posted in the question.
n = 1 // This algorithm compares 2 * k * (k + 1) and n * (n + 1)
sum_n = 1 // It finds all the pairs (n, k) where 0 < n ≤ N in O(N)
sum_2k = 1
for every n <= N // Note that n / k → sqrt(2) when n → ∞
while sum_n < sum_2k
n = n + 1 // This inner loop requires a couple of iterations,
sum_n = sum_n + n // at most.
if ( sum_n == sum_2k )
print n and k
k = k + 1
sum_2k = sum_2k + 2 * k
Here there is an implementation in C++ that can find the first pairs where N < 200,000,000:
N K K * (K + 1)
----------------------------------------------
3 2 6
20 14 210
119 84 7140
696 492 242556
4059 2870 8239770
23660 16730 279909630
137903 97512 9508687656
803760 568344 323015470680
4684659 3312554 10973017315470
27304196 19306982 372759573255306
159140519 112529340 12662852473364940
Of course it becomes impractical for too large values and eventually overflows.
Besides, there's a far better way to find all those pairs (have you noticed the patterns in the sequences of the last digits?).
We can start by manipulating this Diophantine equation:
2k(k + 1) = n(n + 1)
introducing u = n + 1 → n = u - 1
v = k + 1 k = v - 1
2(v - 1)v = (u - 1)u
2(v2 - v) = u2 + u
2(4v2 - 4v) = 4u2 + 4u
2(4v2 - 4v) + 2 = 4u2 - 4u + 2
2(4v2 - 4v + 1) = (4u2 - 4u + 1) + 1
2(2v - 1)2 = (2u - 1)2 + 1
substituting x = 2u - 1 → u = (x + 1)/2
y = 2v - 1 v = (y + 1)/2
2y2 = x2 + 1
x2 - 2y2 = -1
Which is the negative Pell's equation for 2.
It's easy to find its fundamental solutions by inspection, x1 = 1 and y1 = 1. Those would correspond to n = k = 0, a solution of the original Diophantine equation, but not of the original problem (I'm ignoring the sums of 0 terms).
Once those are known, we can calculate all the other ones with two simple recurrence relations
xi+1 = xi + 2yi
yi+1 = yi + xi
Note that we need to "skip" the even ys as they would lead to non integer solutions. So we can directly use theese
xi+2 = 3xi + 4yi → ui+1 = 3ui + 4vi - 3 → ni+1 = 3ni + 4ki + 3
yi+2 = 2xi + 3yi vi+1 = 2ui + 3vi - 2 ki+1 = 2ni + 3ki + 2
Summing up:
n k
-----------------------------------------------
3* 0 + 4* 0 + 3 = 3 2* 0 + 3* 0 + 2 = 2
3* 3 + 4* 2 + 3 = 20 2* 3 + 3* 2 + 2 = 14
3*20 + 4*14 + 3 = 119 2*20 + 3*14 + 2 = 84
...