I would like to loop over following check_matrix
in such a way that code recognize whether the first and second element is 1
and 1
or 1
and 2
etc? Then for each separate class of pair i.e. 1,1
or 1,2
or 2,2
, the code should store in the new matrices, the sum of last element (which in this case has index 8) times exp(-i*q(check_matrix[k][2:5]-check_matrix[k][5:8]))
, where i
is iota (complex number), k
is the running index on check_matrix and q
is a vector defined as given below. So there are 20 q
vectors.
import numpy as np
q= []
for i in np.linspace(0, 10, 20):
q.append(np.array((0, 0, i)))
q = np.array(q)
check_matrix = np.array([[1, 1, 0, 0, 0, 0, 0, -0.7977, -0.243293],
[1, 1, 0, 0, 0, 0, 0, 1.5954, 0.004567],
[1, 2, 0, 0, 0, -1, 0, 0, 1.126557],
[2, 1, 0, 0, 0, 0.5, 0.86603, 1.5954, 0.038934],
[2, 1, 0, 0, 0, 2, 0, -0.7977, -0.015192],
[2, 2, 0, 0, 0, -0.5, 0.86603, 1.5954, 0.21394]])
This means in principles I will have to have 20 matrices of shape 2x2, corresponding to each q
vector.
For the moment my code is giving only one matrix, which appears to be the last one, even though I am appending in the Matrices
. My code looks like below,
for i in range(2):
i = i+1
for j in range(2):
j= j +1
j_list = []
Matrices = []
for k in range(len(check_matrix)):
if check_matrix[k][0] == i and check_matrix[k][1] == j:
j_list.append(check_matrix[k][8]*np.exp(-1J*np.dot(q,(np.subtract(check_matrix[k][2:5],check_matrix[k][5:8])))))
j_11 = np.sum(j_list)
I_matrix[i-1][j-1] = j_11
Matrices.append(I_matrix)
I_matrix is defined as below:
I_matrix= np.zeros((2,2),dtype=np.complex_)
At the moment I get following output.
Matrices = [array([[-0.66071446-0.77603624j, -0.29038112+2.34855023j], [-0.31387562-0.08116629j, 4.2788 +0.j ]])]
But, I desire to get a matrix corresponding to each q
value meaning that in total there should be 20 matrices in this case, where each 2x2 matrix element would be containing sums such that elements belong to 1,1 and 1,2 and 2,2 pairs in following manner
array([[11., 12.],
[21., 22.]])
I shall highly appreciate your suggestion to correct it. Thanks in advance!