In [54]: x=np.array([1,2,3,4])
In [55]: [type(a) for a in x]
Out[55]: [numpy.int64, numpy.int64, numpy.int64, numpy.int64]
In [56]: [id(a) for a in x]
Out[56]: [140147220886728, 140147220887808, 140147220886728, 140147220887808]
The id of small integers is unique, but that's not what the array contains:
In [57]: [type(a) for a in x.tolist()]
Out[57]: [int, int, int, int]
In [58]: [id(a) for a in x.tolist()]
Out[58]: [10914496, 10914528, 10914560, 10914592]
In [59]: id(2)
Out[59]: 10914528
Another way to get the int
objects:
In [60]: [id(a.item()) for a in x]
Out[60]: [10914496, 10914528, 10914560, 10914592]
edit
If I assign the elements of x
to a tuple of variables, the id
are not reused. id(x0)
is still in use, so id(x2)
cannot take it. The alteration in Out[56]
is just an artifact of memory reuse by the interpreter.
In [73]: x0,x1,x2,x3 = x
In [74]: id(x0),id(x1),id(x2),id(x3)
Out[74]: (140146931335720, 140146931335504, 140146931335600, 140146931335576)
In [75]: type(x0)
Out[75]: numpy.int64