Caveat: Not all numbers are rational, e.g. PI is not a rational number. However, given that double
(and float
) have limited precision, there are a limited number of digits in a floating-point value, so you can always find a rational number for that. E.g. Math.PI
is a double
with the value 3.141592653589793
. That number is the rational number 3_141_592_653_589_793 / 1_000_000_000_000_000
.
Understanding the caveat that floating-point values aren't accurate, you can find the rational number with the help of BigDecimal
, then normalize the rational number using BigInteger.gcd()
.
Like this:
static void printAsRational(double value) {
printAsRational(BigDecimal.valueOf(value));
}
static void printAsRational(float value) {
printAsRational(new BigDecimal(Float.toString(value)));
}
static void printAsRational(BigDecimal value) {
BigInteger numerator, denominator;
if (value.signum() == 0) {
// Zero is 0 / 1
numerator = BigInteger.ZERO;
denominator = BigInteger.ONE;
} else {
BigDecimal bd = value.stripTrailingZeros(); // E.g. 1.20 -> 1.2
if (bd.scale() < 0)
bd = bd.setScale(0); // E.g. 1.7e3 -> 1700
numerator = bd.unscaledValue(); // E.g. 1.25 -> 125
denominator = BigDecimal.valueOf(1, -bd.scale()).toBigInteger(); // E.g. 1.25 -> 100
// Normalize, e.g. 12/8 -> 3/2
BigInteger gcd = numerator.gcd(denominator);
if (! gcd.equals(BigInteger.ONE)) {
numerator = numerator.divide(gcd);
denominator = denominator.divide(gcd);
}
}
System.out.println(value + " = " + numerator + " / " + denominator);
}
Tests
printAsRational(Math.PI);
printAsRational(Math.E);
printAsRational(1.25);
printAsRational(1);
printAsRational(0);
printAsRational(-1.25);
printAsRational(1.25e9);
printAsRational(1.25e-9);
Output
3.141592653589793 = 3141592653589793 / 1000000000000000
2.718281828459045 = 543656365691809 / 200000000000000
1.25 = 5 / 4
1.0 = 1 / 1
0.0 = 0 / 1
-1.25 = -5 / 4
1.25E+9 = 1250000000 / 1
1.25E-9 = 1 / 800000000