from concurrent.futures import ProcessPoolExecutor
from concurrent.futures import as_completed
import numpy as np
import time
#creating iterable
testDict = {}
for i in range(1000):
testDict[i] = np.random.randint(1,10)
#default method
stime = time.time()
newdict = []
for k, v in testDict.items():
for i in range(1000):
v = np.tanh(v)
newdict.append(v)
etime = time.time()
print(etime - stime)
#output: 1.1139910221099854
#multi processing
stime = time.time()
testresult = []
def f(item):
x = item[1]
for i in range(1000):
x = np.tanh(x)
return x
def main(testDict):
with ProcessPoolExecutor(max_workers = 8) as executor:
futures = [executor.submit(f, item) for item in testDict.items()]
for future in as_completed(futures):
testresult.append(future.result())
if __name__ == '__main__':
main(testDict)
etime = time.time()
print(etime - stime)
#output: 3.4509658813476562
Learning multiprocessing and testing stuff. Ran a test to check if I have implemented this correctly. Looking at the output time taken, concurrent method is 3 times slower. So what's wrong?
My objective is to parallelize a script which mostly operates on a dictionary of around 500 items. Each loop, values of those 500 items are processed and updated. This loops for let's say 5000 generations. None of the k,v pairs interact with other k,v pairs. [Its a genetic algorithm].
I am also looking at guidance on how to parallelize the above described objective. If I use the correct concurrent futures method on each of my function in my genetic algorithm code, where each function takes an input of a dictionary and outputs a new dictionary, will it be useful? Any guides/resources/help is appreciated.
Edit: If I run this example: https://docs.python.org/3/library/concurrent.futures.html#processpoolexecutor-example, it takes 3 times more to solve than a default for loop check.