I'm using the below code to merge different data frames
Mth_TaT_Data <- Reduce(function(x,y) merge(x,y,by= "Order.Comment.1",all=TRUE),
list(n_Cases,n_Auth_Cases,TaTless3days,TaT4to7days,TaT8to10days,
TaT11to20days,TaTgreater20days,mth_Mean,rpted_50_percent,
rpted_80_percent, rpted_90_percent))
This is how I am generating the data frames:
rpted_90_percent <- TaT_Data %>%
group_by(Order.Comment.1,Year) %>%
filter(!is.na(Turnaround)) %>%
summarise( rpted.90.percent = quantile(Turnaround, c(.9)) , .groups = 'drop')
But when I use reduce to merge the fields it is merging the date identifier each time.
Can I stop this or should I look at using a different method to merge (inner_join
?)
structure(list(Order.Comment.1 = structure(1:6, .Label = c("",
"AB", "TD", "QE", "EF", "ASD", "HG", "AF", "DBF", "ASE", "AFF",
"TRJ", "FJ", "ASFB", "UK", "ALDS", "XKC", "KCS", "LSN", "AVN",
"LAB", "JVA", "ACN", "AKCN", "GMN", "FNDS", "SFNB", "SV"), class = "factor"),
Year.x = c("2020-07", "2020-07", "2020-07", "2020-07", "2020-07",
"2020-07"), n.Cases = c(3L, 221L, 105L, 291L, 153L, 1L),
Year.y = c("2020-07", "2020-07", "2020-07", "2020-07", "2020-07",
NA), n.Auth.Cases = c(3L, 221L, 105L, 291L, 148L, NA), Year.x = c("2020-07",
"2020-07", "2020-07", "2020-07", "2020-07", NA), less_3_days = c(1L,
80L, 7L, 125L, 46L, NA), Year.y = c("2020-07", "2020-07",
"2020-07", "2020-07", "2020-07", NA), bet_4to7_days = c(1L,
90L, 38L, 125L, 54L, NA), Year.x = c(NA, "2020-07", "2020-07",
"2020-07", "2020-07", NA), bet_8to10_days = c(NA, 34L, 35L,
26L, 14L, NA), Year.y = c("2020-07", "2020-07", "2020-07",
"2020-07", "2020-07", NA), bet_11to20_days = c(1L, 17L, 20L,
14L, 18L, NA), Year.x = c(NA, NA, "2020-07", "2020-07", "2020-07",
"2020-07"), greater_20_days = c(NA, NA, 5L, 1L, 21L, 1L),
Year.y = c("2020-07", "2020-07", "2020-07", "2020-07", "2020-07",
"2020-07"), `mean(Turnaround)` = c(8, 5.34841628959276, 8.99047619047619,
55.8969072164948, 9.08496732026144, 44), Year.x = c("2020-07",
"2020-07", "2020-07", "2020-07", "2020-07", "2020-07"), rpted.50.percent = c(`50%` = 7,
`50%` = 5, `50%` = 8, `50%` = 4, `50%` = 5, `50%` = 44),
Year.y = c("2020-07", "2020-07", "2020-07", "2020-07", "2020-07",
"2020-07"), rpted.80.percent = c(`80%` = 11.2, `80%` = 8,
`80%` = 11, `80%` = 7, `80%` = 13, `80%` = 44), Year = c("2020-07",
"2020-07", "2020-07", "2020-07", "2020-07", "2020-07"), rpted.90.percent = c(`90%` = 12.6,
`90%` = 9, `90%` = 15, `90%` = 8, `90%` = 28.8, `90%` = 44
)), row.names = c(NA, 6L), class = "data.frame")
What I want is something like:
structure(list(Order.Comment.1 = structure(1:6, .Label = c("",
"AB", "TD", "QE", "EF", "ASD", "HG", "AF", "DBF", "ASE", "AFF",
"TRJ", "FJ", "ASFB", "UK", "ALDS", "XKC", "KCS", "LSN", "AVN",
"LAB", "JVA", "ACN", "AKCN", "GMN", "FNDS", "SFNB", "SV"), class = "factor"),
Year.x = c("2020-07", "2020-07", "2020-07", "2020-07", "2020-07",
"2020-07"), n.Cases = c(3L, 221L, 105L, 291L, 153L, 1L),
n.Auth.Cases = c(3L, 221L, 105L, 291L, 148L, NA), less_3_days = c(1L,
80L, 7L, 125L, 46L, NA), bet_4to7_days = c(1L,
90L, 38L, 125L, 54L, NA), bet_8to10_days = c(NA, 34L, 35L,
26L, 14L, NA), bet_11to20_days = c(1L, 17L, 20L,
14L, 18L, NA), greater_20_days = c(NA, NA, 5L, 1L, 21L, 1L),
`mean(Turnaround)` = c(8, 5.34841628959276, 8.99047619047619,
55.8969072164948, 9.08496732026144, 44), rpted.50.percent = c(`50%` = 7,
`50%` = 5, `50%` = 8, `50%` = 4, `50%` = 5, `50%` = 44),
rpted.80.percent = c(`80%` = 11.2, `80%` = 8,
`80%` = 11, `80%` = 7, `80%` = 13, `80%` = 44), rpted.90.percent = c(`90%` = 12.6,
`90%` = 9, `90%` = 15, `90%` = 8, `90%` = 28.8, `90%` = 44
)), row.names = c(NA, 6L), class = "data.frame")