I have a dataframe df
with multiple columns and I want to apply the same logic to multiple columns at once. I know how to do it for one column at a time but anyone has an idea how to apply the same logic for multiple columns in a single go?
dataframe df
col0 col1 col2 col3 col4 col5 col6 new_col
row0 24.0 83 42.0 7 96 0 NaN 192
row1 40.0 4 NaN 12 84 0 NaN 168
row2 83.0 22 80.0 26 15 0 NaN 30
row3 92.0 73 58.0 0 33 0 NaN 66
row4 NaN 63 35.0 70 95 0 NaN 190
I have to apply some transformation to col4
, col5
, col6
. I am able to do it one by one but how to do it for all the columns at once in a single go?
df['col4'] = df['col4'].apply(lambda n: n*2)
df['col5'] = df['col5'].apply(lambda n: n*2)
df['col6'] = df['col6'].apply(lambda n: n*2)