Exp(n)
If n = 0
Return 1
End If
If n%2==0
temp = Exp(n/2)
Return temp × temp
Else //n is odd
temp = Exp((n−1)/2)
Return temp × temp × 2
End if
how can i prove by strong induction in n that for all n ≥ 1, the number of multiplications made by Exp (n) is ≤ 2 log2 n.
ps: Exp(n) = 2^n