I think this will be quite simpler using a decorator implemented as a class:
class deco:
def __init__(self, cls):
self.cls = cls
def __call__(self, f):
setattr(self.cls, f.__name__, f)
return self.cls
class A:
def __init__(self, val):
self.val = val
@deco(A)
def compute(a_instance):
print(a_instance.val)
A(1).compute()
A(2).compute()
outputs
1
2
But just because you can do it does not mean you should. This can become a debugging nightmare, and will probably give a hard time to any static code analyser or linter (PyCharm for example "complains" with Unresolved attribute reference 'compute' for class 'A'
)
Why doesn't it work out of the box when we split it to different modules (more specifically, when compute
is defined in another module)?
Assume the following:
a.py
print('importing deco and A')
class deco:
def __init__(self, cls):
self.cls = cls
def __call__(self, f):
setattr(self.cls, f.__name__, f)
return self.cls
class A:
def __init__(self, val):
self.val = val
b.py
print('defining compute')
from a import A, deco
@deco(A)
def compute(a_instance):
print(a_instance.val)
main.py
from a import A
print('running main')
A(1).compute()
A(2).compute()
If we execute main.py
we get the following:
importing deco and A
running main
Traceback (most recent call last):
A(1).compute()
AttributeError: 'A' object has no attribute 'compute'
Something is missing. defining compute
is not outputted. Even worse, compute
is never defined, let alone getting bound to A
.
Why? because nothing triggered the execution of b.py
. Just because it sits there does not mean it gets executed.
We can force its execution by importing it. Feels kind of abusive to me, but it works because importing a file has a side-effect: it executes every piece of code that is not guarded by if __name__ == '__main__
, much like importing a module executes its __init__.py
file.
main.py
from a import A
import b
print('running main')
A(1).compute()
A(2).compute()
outputs
importing deco and A
defining compute
running main
1
2