For my Calculus class it has been asked frequently to find the average speed between two points to find the instantaneous speed, requiring me to do f(b) - f(a) / b - a
. I want to do pass parameters to program (eventually loaded onto my Ti-84) to solve this for me quickly, ideally
working like this: ./a.out 2 4 -1 , 2.9 2.9999
resulting in the polynomial 2x^2 + 4x - 1
, which would be ran on both 2.9
and 2.9999
. So far I have written most of the logic in this code, however I am having difficulty putting it into proper C.
#include<stdio.h>
int main(int argc, char *argv[])
{
int comma; // Ex: ` ./a.out 1 2 3 , 4 5 ` comma is at index 3
// Find out where comman is located
for ( int i=1;i<argc; i++)
{
if (argv[i] == ','){
int comma = i;
break;
}
}
printf("%d", comma);
// PSUEDO-CODE START
//
// Problem: f(b) - f(a) / b - a
//
// Idea
// ------------------------------------------------------------
// ./a.out 7 2 3 , 2 5
// // Right now argc is 6
// // Right now comma is 4
// polynomialOrder = argc - comma
//
// // Get bigger number for the / b - a part
// firstNum = argv[comma + 1]
// secondNum = argv[comma + 2]
// biggerNum = ( firstNum > secondNum ) ? firstNum : secondNum;
// smallerNum = ( firstNum < secondNum ) ? firstNum : secondNum;
//
// ------------------------------------------------------------
//
// Psuedo-code:
//
// for (int i=polynomialOrder; i >= 0; i--)
// {
// if (i == 0){ function += argv[i]} // I don't want 3x^2 + 2x^1 + 4^0 , the
4^0 should be 4
// else{
// // Generate a function?
// polynomial += argv[i]^i; // The += appends to the function
// }
// }
// // result is -7x^2 + 2x^1 + 1
//
// Function generated:
// -------------------------------------------------------
// float polynomial(a, b) {
// float result;
// float a_result = (-7*(a**2)) + (2*(a**1)) + 1;
// float b_result = same as ^, substitute in b
// float result = (b_result - a_result) / ( b - a);
// return return;
// }
// -------------------------------------------------------
// }
// -------------------------------------------------------
// polynomial( smallerNum, biggerNum );
return 0;
}