I have a data frame 'dat' like below,
structure(list(Tair = c(14.34, 14.14, 14.1, 13.92, 13.97, 14.1,
14.18, 14.15, 14.21, 14.38, 14.48, 14.49, 14.44, 14.11, 14.76,
12.46), Tsoil = c(15.59, 7.31, 7.31, 7.48, 7.83, 7.83, 7.83,
7.85, 7.87, 7.93, 7.96, 7.85, 7.79, 7.44, 7.47, 8.13), Treat2 = c("A",
"D 40%", "D 40%", "D 40%", "A", "A", "A", "D 40%", "D 40%", "D 40%",
"D 40%", "A", "D 50%", "A", "A", "D 50%"), LM.flux = c(1.29106069426062,
0.586392893610504, 0.541301472576533, 0.913764582996219, 1.28632065762852,
0.803288804475987, 1.1630166713827, 0.448368288220239, 0.438561131908755,
0.542394298341447, 0.520008006530466, 0.994437948111783, 0.727418651220693,
1.20284923105522, 0.867929974187552, 0.482064493861347), SWC = c(0.2397,
0.2408, 0.2408, 0.2705, 0.2408, 0.253, 0.2526, 0.2035, 0.2039,
0.233, 0.2326, 0.2382, 0.123, 0.1942, 0.2182, 0.2063)), row.names = c("51",
"214", "383", "552", "719", "887", "1057", "1227", "1396", "1568",
"1733", "1905", "2077", "2248", "2419", "2585"), class = "data.frame")
mode2_level <- paste("modrun2_SWC vs LM.flux", sep="")
modrun2 <- lm(LM.flux~SWC, data=dat, na.action=na.exclude, weights=(1/(LM.flux+0.49)),method = "qr")
summary(modrun2)
Now my point is how to find the relationship between SWC and LM.flux under different Treat2 treatments. Hope someone could help. Thanks