I already looked on SE and couldn't find an answer to my question. I am still new to this.
I am trying to take a purchasing csv file and break it into separate dataframes for each year.
For example, if I have a listing with full dates in MM/DD/YYYY format, I am trying to separate them into dataframes for each year. Like Ord2015, Ord2014, etc...
I tried to covert the full date into just the year, and also attempted to use slicing to only look at the last four of the date to no avail.
Here is my current (incomplete) attempt:
import pandas as pd
import csv
import numpy as np
import datetime as dt
import re
purch1 = pd.read_csv('purchases.csv')
#Remove unneeded fluff
del_colmn = ['pid', 'notes', 'warehouse_id', 'env_notes', 'budget_notes']
purch1 = purch1.drop(del_colmn, 1)
#break down by year only
purch1.sort_values(by=['order_date'])
Ord2015 = ()
Ord2014 = ()
for purch in purch1:
Order2015.add(purch1['order_date'] == 2015)
Per req by @anon01... here are the results of the code you had me run. I only used a sample of four as that was all I was initially playing with... The record has almost 20k lines, so I only pulled aside a few to play with.
'{"pid":{"0":75,"2":95,"3":117,"1":82},"env_id":{"0":12454,"2":12532,"3":12623,"1":12511},"ord_date":{"0":"10\/2\/2014","2":"11\/22\/2014","3":"2\/17\/2015","1":"11\/8\/2014"},"cost_center":{"0":"Ops","2":"Cons","3":"Net","1":"Net"},"dept":{"0":"Ops","2":"Cons","3":"Ops","1":"Ops"},"signing_mgr":{"0":"M. Dodd","2":"L. Price","3":"M. Dodd","1":"M. Dodd"},"check_num":{"0":null,"2":null,"3":null,"1":82301.0},"rec_date":{"0":"10\/11\/2014","2":"12\/2\/2014","3":"3\/1\/2015","1":"11\/20\/2014"},"model":{"0":null,"2":null,"3":null,"1":null},"notes":{"0":"Shipped to east WH","2":"Rec'd by L.Price","3":"Shipped to Client (1190)","1":"Rec'd by K. Wilson"},"env_notes":{"0":"appr by K.Polt","2":"appr by S. Crane","3":"appr by K.Polt","1":"appr by K.Polt"},"budget_notes":{"0":null,"2":"OOB expense","3":"Bill to client","1":null},"cost_year":{"0":2014.0,"2":2015.0,"3":null,"1":2014.0}}'