Because the stdout and stdin don't create a loop. They may point to the same tty, but a tty is actually two separate channels, one for input and one for output, and they don't loop back into one another.
You can try creating a loop by running your program with its stdin connected to the read end of a pipe, and with its stdout to its write end. That will work with cat
:
mkfifo fifo
{ echo text; strace cat; } <>fifo >fifo
...
read(0, "text\n", 131072) = 5
write(1, "text\n", 5) = 5
read(0, "text\n", 131072) = 5
write(1, "text\n", 5) = 5
...
But not with your program. That's because your program is trying to read lines, but its writes are not terminated by a newline. Fixing that and also printing the read line to stderr (so we don't have to use strace
to demonstrate that anything happens in your program), we get:
#include <iostream>
#include <string>
int main()
{
std::cout << "text" << std::endl;
for(;;) {
std::string string_object{};
std::getline(std::cin, string_object);
std::cerr << string_object << std::endl;
std::cout << string_object << std::endl;
}
}
g++ foo.cc -o foo
mkfifo fifo; ./foo <>fifo >fifo
text
text
text
...
Note: the <>fifo
way of opening a named pipe (fifo) was used in order to open both its read and its write end at once and so avoid blocking. Instead of reopening the fifo from its path, the stdout could simply be dup'ed from the stdin (prog <>fifo >&0
) or the fifo could be first opened as a different file descriptor, and then the stdin and stdout could be opened without blocking, the first in read-only mode and the second in write-only mode (prog 3<>fifo <fifo >fifo 3>&-
).
They will all work the same with the example at hand. On Linux, :|prog >/dev/fd/0
(and echo text | strace cat >/dev/fd/0
) would also work -- without having to create a named pipe with mkfifo
.