In a previous post here I tried to get the equivalent of an rbind using tidyr::pivotlonger()
. This is the data and the solution.
set.seed(1)
df1 <- data.frame(group = rep(letters[1:2],each=3),
day = rep(1:3,2),
var1_mean = round(rnorm(6),2),
var1_sd = round(rnorm(6,5),2),
var2_mean = round(rnorm(6),2),
var2_sd = round(rnorm(6,5),2))
# group day var1_mean var1_sd var2_mean var2_sd
# 1 a 1 -0.63 5.49 -0.62 5.82
# 2 a 2 0.18 5.74 -2.21 5.59
# 3 a 3 -0.84 5.58 1.12 5.92
# 4 b 1 1.60 4.69 -0.04 5.78
# 5 b 2 0.33 6.51 -0.02 5.07
# 6 b 3 -0.82 5.39 0.94 3.01
df1 %>%
pivot_longer(cols = starts_with('var'),
names_to = c('grp', '.value'),
names_sep="_")
# group day grp mean sd
# <fct> <int> <chr> <dbl> <dbl>
# 1 a 1 var1 -0.63 5.49
# 2 a 1 var2 -0.62 5.82
# 3 a 2 var1 0.18 5.74
# 4 a 2 var2 -2.21 5.59
# 5 a 3 var1 -0.84 5.58
# 6 a 3 var2 1.12 5.92
# 7 b 1 var1 1.6 4.69
# 8 b 1 var2 -0.04 5.78
# 9 b 2 var1 0.33 6.51
# 10 b 2 var2 -0.02 5.07
# 11 b 3 var1 -0.82 5.39
# 12 b 3 var2 0.94 3.01
This solution is quite contingent on the naming convention used for the mean and sd variables. If there is a different naming convention, with a more complex separator between the two important nodes of the column names, like so...
df2 <- data.frame(group = rep(letters[1:2],each=3),
day = rep(1:3,2),
mean_var_1 = round(rnorm(6),2),
sd_var_1 = round(rnorm(6,5),2),
mean_var_2 = round(rnorm(6),2),
sd_var_2 = round(rnorm(6,5),2))
df2
# group day mean_var_1 sd_var_1 mean_var_2 sd_var_2
# 1 a 1 0.62 6.36 -0.39 5.70
# 2 a 2 -0.06 4.90 -0.06 5.56
# 3 a 3 -0.16 5.39 1.10 4.31
# 4 b 1 -1.47 4.95 0.76 4.29
# 5 b 2 -0.48 3.62 -0.16 5.36
# 6 b 3 0.42 4.59 -0.25 5.77
How would I achieve a similar result to the first example, with a single mean
and sd
column and with var_1
and var_2
as the grouping variable?