I'm new to Python so reaching out for help. I have a csv file in S3 bucket, I would like to use Python pyodbc to import this csv file to a table in SQL server. This file is 50 MB (400k records). My code is below. As my code states below, my csv data is in a dataframe, how can I use Bulk insert to insert dataframe data into sql server table. If my approach does not work, please advise me with a different approach.
# Connection to S3
s3 = boto3.client(
service_name = 's3',
region_name = 'us-gov-west-1',
aws_access_key_id = 'ZZZZZZZZZZZZZZZZZZ',
aws_secret_access_key = 'AAAAAAAAAAAAAAAAA')
# Connection to SQL Server
server = 'myserver.amazonaws.com'
path = 'folder1/folder2/folder3/myCSVFile.csv'
cnxn = pyodbc.connect('DRIVER={SQL Server};SERVER='+server+';DATABASE=DB-staging;UID=User132;PWD=XXXXXX')
cursor = cnxn.cursor()
obj_sum = s3.get_object(Bucket = 'my_bucket', Key = path)
csv_data = pd.read_csv(obj_sum['Body'])
df = pd.DataFrame(csv_data, columns = ['SYSTEM_NAME', 'BUCKET_NAME', 'LOCATION', 'FILE_NAME', 'LAST_MOD_DATE', 'FILE_SIZE'])
#print(df.head(n=15).to_string(index=False))
# Insert DataFrame to table
cursor.execute("""truncate table dbo.table1""")
cursor.execute("""BULK INSERT dbo.table1 FROM """ + .....# what do I put here since data is in dataframe??)
I tried to loop through the dataframe and it took 20 minutes to insert 5k records. Code below. Looping through each record is an option but a poor one. This is why I'm moving towards bulk insert if possible.
for i in df.itertuples(index = False):
if i.FILE_SIZE != 0:
cursor.execute("""insert into dbo.table1 (SYSTEM_NAME, BUCKET_NAME, X_LOCATION, FILE_NAME, LAST_MOD_DATE, FILE_SIZE)
values (?,?,?,?,?,?)""", i.SYSTEM_NAME, i.BUCKET_NAME, i.LOCATION, i.FILE_NAME, i.LAST_MOD_DATE, i.FILE_SIZE)
Lastly, bonus question ... I would like to check if the "FILE_SIZE" column in my dataframe equals to 0, if it is skip over that record and move forward to the next record.
Thank you in advnace.