0

I trying to something like array ( DataFrame or Series or array ) using loop but it still be failed.

Here is my code.


for index, city in enumerate(ser_region):
    print(index, region_csv[region_csv["province"] == city].confirmed.sum())
    s = pd.Series([region_csv[region_csv["province"] == city].confirmed.sum()])
s


0 81923
1 16341
2 807506
3 16645
4 3359
5 5217
6 5269
7 5111
8 81059
9 5908
10 5801
11 16780
12 2108
13 1763
14 161079
15 13860
16 1449

0    1449
dtype: int64

region_csv

    date    time    province    confirmed   released    deceased
0   2020-01-20  16  Seoul   0   0   0
1   2020-01-20  16  Busan   0   0   0
2   2020-01-20  16  Daegu   0   0   0
3   2020-01-20  16  Incheon 1   0   0
4   2020-01-20  16  Gwangju 0   0   0
... ... ... ... ... ... ...
2766    2020-06-30  0   Jeollabuk-do    27  21  0
2767    2020-06-30  0   Jeollanam-do    24  19  0
2768    2020-06-30  0   Gyeongsangbuk-do    1389    1328    54
2769    2020-06-30  0   Gyeongsangnam-do    134 128 0
2770    2020-06-30  0   Jeju-do 19  16  0

2771 rows × 6 columns

ser_region = pd.Series(region_csv['province'].unique()); ser_region

0                 Seoul
1                 Busan
2                 Daegu
3               Incheon
4               Gwangju
5               Daejeon
6                 Ulsan
7                Sejong
8           Gyeonggi-do
9            Gangwon-do
10    Chungcheongbuk-do
11    Chungcheongnam-do
12         Jeollabuk-do
13         Jeollanam-do
14     Gyeongsangbuk-do
15     Gyeongsangnam-do
16              Jeju-do
dtype: object

How can I solve it ?

N why I try to do that is 'Rank the regions/provinces in descending order based on the total number of cases'.

My thought was do sum eq by province. and put it in DataFrame or Series or array. and rank it. But I failed.

휘블리
  • 11
  • 2
  • 1
    If your data is already in a dataframe, then it seems that you would like to `.groupby('province').sum()` as a good start point – G. Anderson Oct 06 '20 at 19:53
  • As an FYI, if you're trying to use a `for-loop` with `pandas`, it's probably not correct. `pandas` has many built-in vectorized methods for this type of exploration. – Trenton McKinney Oct 06 '20 at 19:55

0 Answers0