I have the following problem to solve: given a number N and 1<=k<=N, count the number of possible sums of (1,...,k) which add to N. There may be equal factors (e.g. if N=3 and k=2, (1,1,1) is a valid sum), but permutations must not be counted (e.g., if N=3 and k=2, count (1,2) and (2,1) as a single solution). I have implemented the recursive Python code below but I'd like to find a better solution (maybe with dynamic programming? ). It seems similar to the triple step problem, but with the extra constraint of not counting permutations.
def find_num_sums_aux(n, min_k, max_k):
# base case
if n == 0:
return 1
count = 0
# due to lower bound min_k, we evaluate only ordered solutions and prevent permutations
for i in range(min_k, max_k+1):
if n-i>=0:
count += find_num_sums_aux(n-i, i, max_k)
return count
def find_num_sums(n, k):
count = find_num_sums_aux(n,1,k)
return count