I have the following dataset:
import pandas as pd
from datetime import datetime
import numpy as np
date_rng = pd.date_range(start='2020-07-01', end='2020-07-10', freq='d')
l1 = [np.nan, np.nan, "local_max", np.nan, np.nan, "local_min", np.nan, np.nan, "local_max", np.nan]
l2 = [np.nan, np.nan, "local_max", np.nan, np.nan, "local_min", np.nan, np.nan, "local_max", "local_min"]
df = pd.DataFrame({
'date':date_rng,
'value':l1,
'group':'a'
})
df2 = pd.DataFrame({
'date':date_rng,
'value':l1,
'group':'b'
})
df = df.append(df2, ignore_index=True)
I want to calculate features,such as count of local_min and local_max per group and save it in a new dataframe with the desired output:
I able to calculate features but fail to apply it to the group in a elegant way:
columns = ["group", "local_min", "local_max"]
df_features = pd.DataFrame([["a", 1, 2],
["b", 1, 3],],
columns=columns)
df_features
Any help would be much appreciated!