My dataset consists of vectors that are massive. The data points are all mostly zeros with ~3% of the features being 1. Essentially my data is super sparse and I am attempting to train an autoencoder however my model is learning just to recreate vectors of all zeros.
Are there any techniques to prevent this? I have tried replacing mean squared error with dice loss but it completely stopped learning. My other thoughts would be to use a loss function that favors guessing 1s correctly rather than zeros. I have also tried using a sigmoid and linear last activation with no clear winner. Any ideas would be awesome.