Asuming you want Multi index frame
df = pd.read_csv("cumulative_groupby.csv")
df["Date"] = pd.to_datetime(df["Date"], format="%Y-%m-%d")
df.set_index(["Location", "Date", "Entry_Hour"], inplace=True)
df["cumsum"] = df.groupby(["Location", "Date"]).Count_in.cumsum()
print(df)
outputs:
Count_out Count_in cumsum
Location Date Entry_Hour
YEMEN 2018-10-29 16 300 500 500
17 200 600 1100
18 10 20 1120
2018-10-30 16 400 20 20
17 500 20 40
18 700 20 60
USA 2018-10-29 2 300 500 500
3 200 600 1100
4 10 456 1556
2018-10-30 2 400 123 123
3 500 6 129
4 700 788 917
cumulative_groupby.csv
Date,Entry_Hour,Count_out,Location,Count_in
2018-10-29,16,300,YEMEN,500
2018-10-29,17,200,YEMEN,600
2018-10-29,18,10,YEMEN,20
2018-10-30,16,400,YEMEN,20
2018-10-30,17,500,YEMEN,20
2018-10-30,18,700,YEMEN,20
2018-10-29,2,300,USA,500
2018-10-29,3,200,USA,600
2018-10-29,4,10,USA,456
2018-10-30,2,400,USA,123
2018-10-30,3,500,USA,6
2018-10-30,4,700,USA,788