This is a consequence of floating-point imprecision, but it's a little tricky. When you enter the number 1.2 (for example) into R or Excel, it's not represented exactly as 1.2:
print(1.2,digits=22)
## [1] 1.199999999999999955591
Excel and R usually try to shield you from these details, which are inevitable if you're using fixed precision floating-point values (which most computer systems do), by limiting the printing precision to a level that will ignore those floating-point imprecisions. When you explicitly convert to character, however, R figures you don't want to lose information, so it gives you all the digits. Numbers that can be represented exactly in a binary representation, such as 2.375, don't gain all those extra digits.
However, there's a simple solution in this case:
readxl::read_excel("Test.xlsx", na="ND")
This tells R that the string "ND" should be treated as a special "not available" value, so all of your numeric values get handled properly. When you examine your data, the tiny imprecisions will still be there, but R will print the numbers the same way that Excel does.
I feel like there's probably a better way to approach this (mixed-type columns are really hard to deal with), but if you need to 'fix' the format of the numbers you can try something like this:
x <- c(format(1.2,digits=22),"abc")
## [1] "1.199999999999999955591" "abc"
fix_nums <- function(x) {
nn <- suppressWarnings(as.numeric(x))
x[!is.na(nn)] <- format(nn[!is.na(nn)])
return(x)
}
fix_nums(x)
## [1] "1.2" "abc"
Then if you're using tidyverse you can use my_data %>% mutate_all(fix_nums)