The call to numpy.zeros()
with a tuple starting with zero results in the array being empty.
>>> import numpy as np
>>> tmp = np.zeros((0, 14, 14, 512))
>>> tmp
array([], shape=(0, 14, 14, 512), dtype=float64)
To initialize tmp
with zeros, you could do:
>>> tmp = np.zeros((14, 14, 512))
>>> tmp
array([[[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
...,
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]],
...
Complete example
import numpy as np
predictions = np.random.randint(9, size=(14 * 14 * 512)).reshape((14, 14, 512))
print(f"shape of predictions: {predictions.shape}")
tmp = np.zeros((14, 14, 512))
tmp[0,:,:] = predictions[0,:]
print(f"shape of tmp: {tmp.shape}")
print(f"tmp data:\n{tmp}")
Output
shape of predictions: (14, 14, 512)
shape of tmp: (14, 14, 512)
tmp data:
[[[0. 0. 8. ... 6. 8. 1.]
[8. 6. 0. ... 4. 5. 3.]
[7. 6. 2. ... 6. 7. 6.]
...
[4. 2. 4. ... 1. 5. 8.]
[4. 3. 8. ... 0. 5. 0.]
[4. 5. 3. ... 0. 0. 1.]]
[[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
...
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]]
...
See also
What does 'index 0 is out of bounds for axis 0 with size 0' mean?