0

To keep it simple I created small dummy dataset.

library(tidyverse)
library(lubridate)

myDF <- tibble(country = rep(c("UK", "US"), each = 3),
              date = c("2020-01-01", "2020-02-01", "2020-02-01", "2020-03-01",
                       "2020-03-01", "2020-03-01"))
myDF <- myDF %>% mutate(date = as_date(date))

  country date      
  <chr>   <date>    
1 UK      2020-01-01
2 UK      2020-02-01
3 UK      2020-02-01
4 US      2020-03-01
5 US      2020-03-01
6 US      2020-03-01

I know the unique() function can be used to find that there are 3 unique values ("2020-01-01", "2020-02-01", "2020-03-01") in the date column.

unique(myDF$date) # the unique values
length(unique(myDF$date)) # number of unique values

But how can I create a small table output which displays the frequency of each of these unique occurrences in a specific column (i.e. date) in my dataset? I am looking for something like this:

   myDF$date  freq
"2020-01-01"     1
"2020-02-01"     2
"2020-03-01"     3
kiwi
  • 565
  • 3
  • 11

1 Answers1

2
You can do something like 


  library(dplyr)
myDF %>% count(date, name = 'freq')
Seyma Kalay
  • 2,037
  • 10
  • 22