Disclaimer:
This is copy-paste from my answer to another question here. The code was in turn ported from yet another question here.
Utilities:
function isPrime(n) {
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
for (let i = 5; i * i <= n; i = i + 6) {
if (n % i == 0 || n % (i + 2) == 0) return false;
}
return true;
}
function findNextPrime(n) {
if (n <= 1) return 2;
let prime = n;
while (true) {
prime++;
if (isPrime(prime)) return prime;
}
}
function getIndexGeneratorParams(spaceSize) {
const N = spaceSize;
const Q = findNextPrime(Math.floor(2 * N / (1 + Math.sqrt(5))))
const firstIndex = Math.floor(Math.random() * spaceSize);
return [firstIndex, N, Q]
}
function getNextIndex(prevIndex, N, Q) {
return (prevIndex + Q) % N
}
Usage
// Each day you bootstrap to get a tuple of these parameters and persist them throughout the day.
const [firstIndex, N, Q] = getIndexGeneratorParams(10000)
// need to keep track of previous index generated.
// it’s a seed to generate next one.
let prevIndex = firstIndex
// calling this function gives you the unique code
function getHashCode() {
prevIndex = getNextIndex(prevIndex, N, Q)
return prevIndex.toString().padStart(4, "0")
}
console.log(getHashCode());
Explanation
For simplicity let’s say you want generate non-repeat numbers from 0 to 35 in random order. We get pseudo-randomness by polling a "full cycle iterator"†. The idea is simple:
- have the indexes
0..35
layout in a circle, denote upperbound as N=36
- decide a step size, denoted as
Q
(Q=23
in this case) given by this formula‡
Q = findNextPrime(Math.floor(2 * N / (1 + Math.sqrt(5))))
- randomly decide a starting point, e.g. number
5
- start generating seemingly random
nextIndex
from prevIndex
, by
nextIndex = (prevIndex + Q) % N
So if we put 5
in we get (5 + 23) % 36 == 28
. Put 28
in we get (28 + 23) % 36 == 15
.
This process will go through every number in circle (jump back and forth among points on the circle), it will pick each number only once, without repeating. When we get back to our starting point 5
, we know we've reach the end.
†: I'm not sure about this term, just quoting from this answer
‡: This formula only gives a nice step size that will make things look more "random", the only requirement for Q
is it must be coprime to N