To get a optimizing solution using Z3 solver, I have learned 2 methods for optimization. The one is using the optimizing solver with the instructions "MkMaximize" or "MkMinimize". The other is to use the optimizer method with general solver as the question [optimization timeout1 ] describing.
I find there exists inconsistency sometime, well, which I become used to learn that the optimizer method can get a more accurate answer while the optimizing method of optimizing solver is limited. But I come to find the inconsistency is not permanent, the solution generated with 2 methods can be same sometimes.
I wonder which decides the inconsistency between 2 methods, is the formulation of constraints or the objectives? And I'd like to get information that what leads to the inaccuracy in the optimizing solver.
Adding examples:
Context ctx = new Context();
Optimize o = ctx.mkOptimize();
ArithExpr M1A10 = ctx.mkIntConst("M1A10");
ArithExpr M2A10 = ctx.mkIntConst("M2A10");
ArithExpr M3A10 = ctx.mkIntConst("M3A10");
ArithExpr M1A20 = ctx.mkIntConst("M1A20");
ArithExpr M2A20 = ctx.mkIntConst("M2A20");
ArithExpr M3A20 = ctx.mkIntConst("M3A20");
ArithExpr M1B10 = ctx.mkIntConst("M1B10");
ArithExpr M2B10 = ctx.mkIntConst("M2B10");
ArithExpr M3B10 = ctx.mkIntConst("M3B10");
ArithExpr M1B20 = ctx.mkIntConst("M1B20");
ArithExpr M2B20 = ctx.mkIntConst("M2B20");
ArithExpr M3B20 = ctx.mkIntConst("M3B20");
ArithExpr M1B30 = ctx.mkIntConst("M1B30");
ArithExpr M2B30 = ctx.mkIntConst("M2B30");
ArithExpr M3B30 = ctx.mkIntConst("M3B30");
ArithExpr M1C10 = ctx.mkIntConst("M1C10");
ArithExpr M2C10 = ctx.mkIntConst("M2C10");
ArithExpr M3C10 = ctx.mkIntConst("M3C10");
ArithExpr M1C20 = ctx.mkIntConst("M1C20");
ArithExpr M2C20 = ctx.mkIntConst("M2C20");
ArithExpr M3C20 = ctx.mkIntConst("M3C20");
ArithExpr M1C30 = ctx.mkIntConst("M1C30");
ArithExpr M2C30 = ctx.mkIntConst("M2C30");
ArithExpr M3C30 = ctx.mkIntConst("M3C30");
ArithExpr M1A = ctx.mkAdd(M1A10,M1A20);
ArithExpr M2A = ctx.mkAdd(M2A10,M2A20);
ArithExpr M3A = ctx.mkAdd(M3A10,M3A20);
ArithExpr M1B = ctx.mkAdd(M1B10,M1B20,M1B30);
ArithExpr M2B = ctx.mkAdd(M2B10,M2B20,M2B30);
ArithExpr M3B = ctx.mkAdd(M3B10,M3B20,M3B30);
ArithExpr M1C = ctx.mkAdd(M1C10,M1C20,M1C30);
ArithExpr M2C = ctx.mkAdd(M2C10,M2C20,M2C30);
ArithExpr M3C = ctx.mkAdd(M3C10,M3C20,M3C30);
ArithExpr M1z10= ctx.mkAdd(M1A10,M1B10,M1C10);
ArithExpr M2z10= ctx.mkAdd(M2A10,M2B10,M2C10);
ArithExpr M3z10= ctx.mkAdd(M3A10,M3B10,M3C10);
ArithExpr M1z20= ctx.mkAdd(M1A20,M1B20,M1C20);
ArithExpr M2z20= ctx.mkAdd(M2A20,M2B20,M2C20);
ArithExpr M3z20= ctx.mkAdd(M3A20,M3B20,M3C20);
ArithExpr M1z30= ctx.mkAdd(M1B30,M1C30);
ArithExpr M2z30= ctx.mkAdd(M2B30,M2C30);
ArithExpr M3z30= ctx.mkAdd(M3B30,M3C30);
o.Add(ctx.mkGe(M1A10,ctx.mkInt(0)));
o.Add(ctx.mkGe(M1A20,ctx.mkInt(0)));
o.Add(ctx.mkGe(M2A10,ctx.mkInt(0)));
o.Add(ctx.mkGe(M2A20,ctx.mkInt(0)));
o.Add(ctx.mkGe(M3A10,ctx.mkInt(0)));
o.Add(ctx.mkGe(M3A20,ctx.mkInt(0)));
o.Add(ctx.mkGe(M1B10,ctx.mkInt(0)));
o.Add(ctx.mkGe(M1B20,ctx.mkInt(0)));
o.Add(ctx.mkGe(M1B30,ctx.mkInt(0)));
o.Add(ctx.mkGe(M2B10,ctx.mkInt(0)));
o.Add(ctx.mkGe(M2B20,ctx.mkInt(0)));
o.Add(ctx.mkGe(M3B30,ctx.mkInt(0)));
o.Add(ctx.mkGe(M3B10,ctx.mkInt(0)));
o.Add(ctx.mkGe(M3B20,ctx.mkInt(0)));
o.Add(ctx.mkGe(M3B30,ctx.mkInt(0)));
o.Add(ctx.mkGe(M1C10,ctx.mkInt(0)));
o.Add(ctx.mkGe(M1C20,ctx.mkInt(0)));
o.Add(ctx.mkGe(M1C30,ctx.mkInt(0)));
o.Add(ctx.mkGe(M2C10,ctx.mkInt(0)));
o.Add(ctx.mkGe(M2C20,ctx.mkInt(0)));
o.Add(ctx.mkGe(M2C30,ctx.mkInt(0)));
o.Add(ctx.mkGe(M3C30,ctx.mkInt(0)));
o.Add(ctx.mkGe(M3C10,ctx.mkInt(0)));
o.Add(ctx.mkGe(M3C20,ctx.mkInt(0)));
o.Add(ctx.mkGe(M3C30,ctx.mkInt(0)));
o.Add(ctx.mkLt(M1z10,ctx.mkInt(80)));
o.Add(ctx.mkLt(M1z20,ctx.mkInt(80)));
o.Add(ctx.mkLt(M1z30,ctx.mkInt(80)));
o.Add(ctx.mkLt(M2z10,ctx.mkInt(80)));
o.Add(ctx.mkLt(M2z20,ctx.mkInt(80)));
o.Add(ctx.mkLt(M2z30,ctx.mkInt(80)));
o.Add(ctx.mkLt(M3z10,ctx.mkInt(80)));
o.Add(ctx.mkLt(M3z20,ctx.mkInt(80)));
o.Add(ctx.mkLt(M3z30,ctx.mkInt(80)));
o.Add(ctx.mkGe(ctx.mkAdd(ctx.mkMul(M1A10,ctx.mkInt(100)),ctx.mkMul(ctx.mkInt(200),M2A10),ctx.mkMul(ctx.mkInt(150),M3A10)), ctx.mkInt(20000)));
o.Add(ctx.mkGe(ctx.mkAdd(ctx.mkMul(M1A,ctx.mkInt(100)),ctx.mkMul(ctx.mkInt(200),M2A),ctx.mkMul(ctx.mkInt(150),M3A)), ctx.mkInt(40000)));
o.Add(ctx.mkGe(ctx.mkAdd(ctx.mkMul(ctx.mkAdd(M1B10,M1B20),ctx.mkInt(150)),ctx.mkMul(ctx.mkInt(300),ctx.mkAdd(M2B10,M2B20)),ctx.mkMul(ctx.mkInt(200),ctx.mkAdd(M3B10,M3B20))), ctx.mkInt(25000)));
o.Add(ctx.mkGe(ctx.mkAdd(ctx.mkMul(M1B,ctx.mkInt(150)),ctx.mkMul(ctx.mkInt(300),M2B),ctx.mkMul(ctx.mkInt(200),M3B)), ctx.mkInt(45000)));
o.Add(ctx.mkGe(ctx.mkAdd(ctx.mkMul(M1C,ctx.mkInt(200)),ctx.mkMul(ctx.mkInt(250),M2C),ctx.mkMul(ctx.mkInt(200),M3C)), ctx.mkInt(30000)));
ArithExpr time = ctx.mkAdd( M1A,M2A,M3A,M1B,M2B,M3B,M1C,M2C,M3C);
o.MkMinimize(time);
// o.Add(ctx.mkLt(time, ctx.mkInt(550)));
o.Check();
if(o.Check() == Status.SATISFIABLE)
{
M1A10=(ArithExpr) o.getModel().getConstInterp(M1A10).simplify();
M1A20=(ArithExpr) o.getModel().getConstInterp(M1A20).simplify();
M2A10=(ArithExpr) o.getModel().getConstInterp(M2A10).simplify();
M2A20=(ArithExpr) o.getModel().getConstInterp(M2A20).simplify();
M3A10=(ArithExpr) o.getModel().getConstInterp(M3A10).simplify();
M3A20=(ArithExpr) o.getModel().getConstInterp(M3A20).simplify();
M1B10=(ArithExpr) o.getModel().getConstInterp(M1B10).simplify();
M1B20=(ArithExpr) o.getModel().getConstInterp(M1B20).simplify();
M1B30=(ArithExpr) o.getModel().getConstInterp(M1B30).simplify();
M2B10=(ArithExpr) o.getModel().getConstInterp(M2B10).simplify();
M2B20=(ArithExpr) o.getModel().getConstInterp(M2B20).simplify();
M2B30=(ArithExpr) o.getModel().getConstInterp(M2B30).simplify();
M3B10=(ArithExpr) o.getModel().getConstInterp(M3B10).simplify();
M3B20=(ArithExpr) o.getModel().getConstInterp(M3B20).simplify();
M3B30=(ArithExpr) o.getModel().getConstInterp(M3B30).simplify();
M1C10=(ArithExpr) o.getModel().getConstInterp(M1C10).simplify();
M1C20=(ArithExpr) o.getModel().getConstInterp(M1C20).simplify();
M1C30=(ArithExpr) o.getModel().getConstInterp(M1C30).simplify();
M2C10=(ArithExpr) o.getModel().getConstInterp(M2C10).simplify();
M2C20=(ArithExpr) o.getModel().getConstInterp(M2C20).simplify();
M2C30=(ArithExpr) o.getModel().getConstInterp(M2C30).simplify();
M3C10=(ArithExpr) o.getModel().getConstInterp(M3C10).simplify();
M3C20=(ArithExpr) o.getModel().getConstInterp(M3C20).simplify();
M3C30=(ArithExpr) o.getModel().getConstInterp(M3C30).simplify();
ArithExpr timeA = ctx.mkAdd(M1A10,M1A20,M2A10,M2A20,M3A10,M3A20,M1B10,M1B20,M1B30,M2B10,M2B20,M2B30,M3B10,M3B20,M3B30,M1C10,M1C20,M1C30,M2C10,M2C20,M2C30,M3C10,M3C20,M3C30);
System.out.println(timeA.simplify());
}
System.out.println(o.Check());
}
The example is a long. The result of the the instruction 'mkMinimize' is 557, but when I use the constraint of 'o.Add(ctx.mkLt(time, ctx.mkInt(550)));'. it is still working and generate the result of 549.