I read this other post about a F# version of this algorithm. I found it very elegant and tried to combine some ideas of the answers.
Although I optimized it to make fewer checks (check only numbers around 6) and leave out unnecessary caching, it is still painfully slow. Calculating the 10,000th prime already take more than 5 minutes. Using the imperative approach, I can test all 31-bit integers in not that much more time.
So my question is if I am missing something that makes all this so slow. For example in another post someone was speculating that LazyList
may use locking. Does anyone have an idea?
As StackOverflow's rules say not to post new questions as answers, I feel I have to start a new topic for this.
Here's the code:
#r "FSharp.PowerPack.dll"
open Microsoft.FSharp.Collections
let squareLimit = System.Int32.MaxValue |> float32 |> sqrt |> int
let around6 = LazyList.unfold (fun (candidate, (plus, next)) ->
if candidate > System.Int32.MaxValue - plus then
None
else
Some(candidate, (candidate + plus, (next, plus)))
) (5, (2, 4))
let (|SeqCons|SeqNil|) s =
if Seq.isEmpty s then SeqNil
else SeqCons(Seq.head s, Seq.skip 1 s)
let rec lazyDifference l1 l2 =
if Seq.isEmpty l2 then l1 else
match l1, l2 with
| LazyList.Cons(x, xs), SeqCons(y, ys) ->
if x < y then
LazyList.consDelayed x (fun () -> lazyDifference xs l2)
elif x = y then
lazyDifference xs ys
else
lazyDifference l1 ys
| _ -> LazyList.empty
let lazyPrimes =
let rec loop = function
| LazyList.Cons(p, xs) as ll ->
if p > squareLimit then
ll
else
let increment = p <<< 1
let square = p * p
let remaining = lazyDifference xs {square..increment..System.Int32.MaxValue}
LazyList.consDelayed p (fun () -> loop remaining)
| _ -> LazyList.empty
loop (LazyList.cons 2 (LazyList.cons 3 around6))