I am writing a plugin that interfaces with a desktop application through a ZeroMQ REQ/REP
request-reply communication archetype. I can currently receive a request, but the application seemingly crashes if a reply is not sent quick enough.
I receive the request on a spawned thread and put it in a queue. This queue is processed in another thread, in which the processing function is invoked by the application periodically.
The message is correctly being received and processed, but the response cannot be sent until the next iteration of the function, as I cannot get the data from the application until then.
When this function is conditioned to send the response on the next iteration, the application will crash. However, if I send fake data as the response soon after receiving the request, in the first iteration, the application will not crash.
Constructing the socket
zmq::socket_t socket(m_context, ZMQ_REP);
socket.bind("tcp://*:" + std::to_string(port));
Receiving the message in the spawned thread
void ZMQReceiverV2::receiveRequests() {
nInfo(*m_logger) << "Preparing to receive requests";
while (m_isReceiving) {
zmq::message_t zmq_msg;
bool ok = m_respSocket.recv(&zmq_msg, ZMQ_NOBLOCK);
if (ok) {
// msg_str will be a binary string
std::string msg_str;
msg_str.assign(static_cast<char *>(zmq_msg.data()), zmq_msg.size());
nInfo(*m_logger) << "Received the message: " << msg_str;
std::pair<std::string, std::string> pair("", msg_str);
// adding to message queue
m_mutex.lock();
m_messages.push(pair);
m_mutex.unlock();
}
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
nInfo(*m_logger) << "Done receiving requests";
}
Processing function on seperate thread
void ZMQReceiverV2::exportFrameAvailable()
// checking messages
// if the queue is not empty
m_mutex.lock();
if (!m_messages.empty()) {
nInfo(*m_logger) << "Reading message in queue";
smart_target::SMARTTargetCreateRequest id_msg;
std::pair<std::string, std::string> pair = m_messages.front();
std::string topic = pair.first;
std::string msg_str = pair.second;
processMsg(msg_str);
// removing just read message
m_messages.pop();
//m_respSocket.send(zmq::message_t()); wont crash if I reply here in this invocation
}
m_mutex.unlock();
// sending back the ID that has just been made, for it to be mapped
if (timeToSendReply()) {
sendReply(); // will crash, if I wait for this to be exectued on next invocation
}
}
My research shows that there is no time limit for the response to be sent, so this, seeming to be, timing issue, is strange.
Is there something that I am missing that will let me send the response on the second iteration of the processing function?
Revision 1:
I have edited my code, so that the responding socket only ever exists on one thread. Since I need to get information from the processing function to send, I created another queue, which is checked in the revised the function running on its own thread.
void ZMQReceiverV2::receiveRequests() {
zmq::socket_t socket = setupBindSocket(ZMQ_REP, 5557, "responder");
nInfo(*m_logger) << "Preparing to receive requests";
while (m_isReceiving) {
zmq::message_t zmq_msg;
bool ok = socket.recv(&zmq_msg, ZMQ_NOBLOCK);
if (ok) {
// does not crash if I call send helper here
// msg_str will be a binary string
std::string msg_str;
msg_str.assign(static_cast<char *>(zmq_msg.data()), zmq_msg.size());
NLogger::nInfo(*m_logger) << "Received the message: " << msg_str;
std::pair<std::string, std::string> pair("", msg_str);
// adding to message queue
m_mutex.lock();
m_messages.push(pair);
m_mutex.unlock();
}
std::this_thread::sleep_for(std::chrono::milliseconds(100));
if (!sendQueue.empty()) {
sendEntityCreationMessage(socket, sendQueue.front());
sendQueue.pop();
}
}
nInfo(*m_logger) << "Done receiving requests";
socket.close();
}
The function sendEntityCreationMessage()
is a helper function that ultimately calls socket.send()
.
void ZMQReceiverV2::sendEntityCreationMessage(zmq::socket_t &socket, NUniqueID id) {
socket.send(zmq::message_t());
}
This code seems to be following the thread safety guidelines for sockets. Any suggestions?