Use mask
with str.contains()
to perform the operation on rows with the specified condition, and then use the following operation: .str.split(', ').str[0:2].agg(', '.join))
:
df['Col'] = df['Col'].mask(df['Col'].str.contains('County, Texas'),
df['Col'].str.split(', ').str[0:2].agg(', '.join))
Full Code:
import pandas as pd
df = pd.DataFrame({'Col': {0: 'Jack Smith, Bank, Wilber, Lincoln County, Texas',
1: 'Jack Smith, Union, Credit, Bank, Wilber, Lincoln County, Texas',
2: 'Jack Smith, Union, Credit, Bank, Wilber, Lincoln County, Texas, Branch, Landing, Services',
3: 'Jack Smith, Union, Credit, Bank, Wilber, Branch, Landing, Services'}})
df['Col'] = df['Col'].mask(df['Col'].str.contains('County, Texas'),
df['Col'].str.split(', ').str[0:2].agg(', '.join))
df
Out[1]:
Col
0 Jack Smith, Bank
1 Jack Smith, Union
2 Jack Smith, Union
3 Jack Smith, Union, Credit, Bank, Wilber, Branc...
Per the updated question, you can use np.select
:
import pandas as pd
df = pd.DataFrame({'Col': {0: 'Jack Smith, Bank, Wilber, Lincoln County, Texas',
1: 'Jack Smith, Bank, Credit, Bank, Wilber, Lincoln County, Texas',
2: 'Jack Smith, Bank, Union, Credit, Bank, Wilber, Lincoln County, Texas, Branch, Landing, Services',
3: 'Jack Smith, Bank, Credit, Bank, Wilber, Branch, Landing, Services'}})
df['Col'] = np.select([df['Col'].str.contains('County, Texas') & ~df['Col'].str.contains('Union'),
df['Col'].str.contains('County, Texas') & df['Col'].str.contains('Union')],
[df['Col'].str.split(', ').str[0:2].agg(', '.join),
df['Col'].str.split(', ').str[0:3].agg(', '.join)],
df['Col'])
df
Out[2]:
Col
0 Jack Smith, Bank
1 Jack Smith, Bank
2 Jack Smith, Bank, Union
3 Jack Smith, Bank, Credit, Bank, Wilber, Branch...