I have a dataframe of hourly averaged values taken from 6 different sensors across a period of about a year, with a group of each of the 6 sensors located in 5 different sites. (Example - site_id arc1045 has sensors 0a, 0b, 0c, 0d, 0e, 0f and site_id arc1046 has sensors 0a, 0b, 0c, 0d, 0e, 0f etc.)
site_id sensor_id datetime hourly_avg
<chr> <chr> <dttm> <dbl>
1 arc1045 0a 2019-11-15 09:00:00 3.67
2 arc1045 0a 2019-11-15 10:00:00 4.68
3 arc1045 0a 2019-11-15 11:00:00 5.63
4 arc1045 0a 2019-11-15 12:00:00 5.8
5 arc1045 0a 2019-11-15 13:00:00 6.32
6 arc1045 0a 2019-11-15 14:00:00 5.28
7 arc1045 0a 2019-11-15 15:00:00 6.52
8 arc1045 0a 2019-11-15 16:00:00 5.72
9 arc1045 0a 2019-11-15 17:00:00 8.43
10 arc1045 0a 2019-11-15 18:00:00 6.62
However, certain hourly averaged values are missing. I want to figure out these missing readings and append these rows with NA values, by checking hourly intervals of each sensor_id and site_id from start date (2019-11-15 09:00:00) to end date (2020-08-25 15:00:11)
I can do this by looping through the dataframe in hourly intervals, but is there an easier way to handle this using an R package?