What I did is I created another series which says when a day should be offset back by one day, and I multiplied it by a pd.timedelta object, such that 0 turns into "0 days" and 1 turns into "1 day". Subtracting two series gives the right result.
Let me know how the following code works for you.
import pandas as pd
import numpy as np
# copied from https://stackoverflow.com/questions/50559078/generating-random-dates-within-a-given-range-in-pandas
def random_dates(start, end, n=15):
start_u = start.value//10**9
end_u = end.value//10**9
return pd.to_datetime(np.random.randint(start_u, end_u, n), unit='s')
dates = random_dates(start=pd.to_datetime('2020-01-01'),
end=pd.to_datetime('2021-01-01'))
timestamps = pd.Series(dates)
# this takes only the hour component of every datetime
hours = timestamps.dt.hour
# this takes only the hour component of every datetime
dates = timestamps.dt.date
# this compares the hours with 15, and returns a boolean if it is smaller
flag_is_day_before = hours < 15
# now you can set the dates by multiplying the 1s and 0s with a day timedelta
new_dates = dates - pd.to_timedelta(1, unit='day') * flag_is_day_before
df = pd.DataFrame(data=dict(timestamps=timestamps, new_dates=new_dates))
print(df)
This outputs
timestamps new_dates
0 2020-07-10 20:11:13 2020-07-10
1 2020-05-04 01:20:07 2020-05-03
2 2020-03-30 09:17:36 2020-03-29
3 2020-06-01 16:16:58 2020-06-01
4 2020-09-22 04:53:33 2020-09-21
5 2020-08-02 20:07:26 2020-08-02
6 2020-03-22 14:06:53 2020-03-21
7 2020-03-14 14:21:12 2020-03-13
8 2020-07-16 20:50:22 2020-07-16
9 2020-09-26 13:26:55 2020-09-25
10 2020-11-08 17:27:22 2020-11-08
11 2020-11-01 13:32:46 2020-10-31
12 2020-03-12 12:26:21 2020-03-11
13 2020-12-28 08:04:29 2020-12-27
14 2020-04-06 02:46:59 2020-04-05