Below is the a small view of the file I would like to convert into a data frame but i am un sure how to do so. The data is time dependent and i am to extract statistical time features from the data. I not very good at python so just wanted to know if anyone can help out. I tried using pd.csv_read but it did not work.
### file starts from here
Data info
File name: D:\Share\20190418 - Baseline test Nu2\20190418 BaselineTest_0000.dxd
Start time: 18/04/2019 08:58:48.000
Number of channels: 16
Sample rate: 100000
Store type: fast on trigger
Data1
Time (s) SG_Outer_L (um/m) SG_Outer_R (um/m) SG_Hous_1 (um/m) SG_Hous_2 (um/m) Temp_Oil in (°C) Temp_Oil out (°C) Acc_horizontal (g) Acc_vertical (g) Temp_Lager 1 (°C) Temp_Lager 2 (°C) Temp_Lager 3 (°C) Oil_flow_rate_10 (l/min) Axial_load (N) Radial_load (N) Cage_Speed (V) Shaft_Speed (V)
0 -0.0068270117 0.031498194 0.015425649 0.0081171542 64.978195 62.291813 2.6422348 -5.608747 72.961945 2586.0647 2586.0647 0.78165096 1369.7631 242.88226 5.0014362 7.4735909
1E-5 -0.0073644072 0.031504273 0.017687764 0.0081018955 64.978195 62.284924 2.6433446 -5.5246129 73.38121 2586.0647 2586.0647 0.78043807 1371.8307 242.89799 5.0014663 7.3899431
2E-5 -0.0085513741 0.031825662 0.016042795 0.0080183297 64.981102 62.275719 2.6506128 -5.513145 73.893578 2586.0647 2586.0647 0.77893639 1372.2308 242.94258 5.0013895 7.2960548
3E-5 -0.0086480528 0.031876445 0.017976012 0.0084936172 64.992264 62.273884 2.6302221 -5.5842891 73.762863 2586.0647 2586.0647 0.78025234 1369.4431 242.67818 5.0014 7.1909947
4E-5 -0.0086286217 0.032107234 0.016237702 0.0077844411 65.007309 62.275791 2.6386025 -5.5736065 73.516548 2586.0647 2586.0647 0.78200996 1373.3425 242.85245 5.0014629 7.073348
5E-5 -0.0095008761 0.031255722 0.018005576 0.00771375 65.024422 62.273144 2.6050999 -5.631999 73.183296 2586.0647 2586.0647 0.78379929 1370.1801 242.6796 5.0013704 6.9421921
6E-5 -0.010682955 0.031410575 0.01696023 0.0076747686 65.026711 62.267639 2.5763896 -5.6127739 73.090805 2586.0647 2586.0647 0.7824437 1370.6685 242.61665 5.001359 6.7960019
7E-5 -0.01044561 0.031275749 0.017342892 0.0076773912 65.026405 62.257004 2.6531544 -5.5542912 73.434235 2586.0647 2586.0647 0.78043807 1372.9846 242.73277 5.001399 6.6338596
8E-5 -0.011554852 0.030923724 0.017254915 0.0082156211 65.021851 62.24482 2.6605763 -5.5569386 73.518707 2586.0647 2586.0647 0.77988541 1368.8831 242.47003 5.001389 6.4542885
9E-5 -0.012163892 0.03091228 0.016460028 0.0073091537 65.033676 62.243988 2.614291 -5.5779767 73.431458 2586.0647 2586.0647 0.78092957 1372.3529 242.56969 5.0013461 6.2561054
0.0001 -0.012650505 0.031512976 0.018260445 0.0075946599 65.038277 62.239384 2.6102796 -5.6011024 73.344215 2586.0647 2586.0647 0.78180385 1371.2454 242.51366 5.0013571 6.0381708
0.00011 -0.013093844 0.032302618 0.017233219 0.0077930242 65.052727 62.236786 2.6299396 -5.5515862 73.609955 2586.0647 2586.0647 0.78288198 1369.8052 242.3196 5.0013161 5.7990427
0.00012 -0.014106408 0.031403065 0.018840875 0.0076655895 65.055557 62.229443 2.6078358 -5.566566 73.103142 2586.0647 2586.0647 0.78313679 1373.0814 242.49458 5.0013118 5.53794
0.00013 -0.013847843 0.03197372 0.016098227 0.0075721294 65.057281 62.218475 2.6066508 -5.5958104 73.260979 2586.0647 2586.0647 0.78193635 1369.0809 242.239 5.0013323 5.2536101
0.00014 -0.014797106 0.031957388 0.019053426 0.0075464994 65.050819 62.208843 2.6366165 -5.5566993 73.292732 2586.0647 2586.0647 0.78014022 1371.717 242.26141 5.001359 4.9447308
0.00015 -0.015255347 0.032333732 0.016939726 0.0069677383 65.050888 62.199688 2.6564231 -5.5564809 73.660515 2586.0647 2586.0647 0.78051394 1371.8812 242.30457 5.0012894 4.6104355
0.00016 -0.015934125 0.032308817 0.019215669 0.0078609735 65.051773 62.190773 2.6778057 -5.5123353 73.295815 2586.0647 2586.0647 0.78107792 1368.403 242.07306 5.0012798 4.2496986
0.00017 -0.016212001 0.03265214 0.01707324 0.0076897889 65.06131 62.186646 2.6274028 -5.5611897 73.272079 2586.0647 2586.0647 0.78263283 1373.052 242.20992 5.0013247 3.864028
0.00018 -0.016418234 0.033141613 0.018270817 0.0079661161 65.06662 62.176872 2.5998559 -5.6419849 73.134583 2586.0647 2586.0647 0.78262943 1369.5863 242.09857 5.0013113 3.4664674
0.00019 -0.017450467 0.032771468 0.019201484 0.0068022758 65.056206 62.165474 2.6255944 -5.5718565 73.305992 2586.0647 2586.0647 0.78106433 1370.4032 241.95599 5.0012178 3.0799