When a custom loss is defined in a Keras model, online sources seem to indicate that the the loss should return an array of values (a loss for each sample in the batch). Something like this
def custom_loss_function(y_true, y_pred):
squared_difference = tf.square(y_true - y_pred)
return tf.reduce_mean(squared_difference, axis=-1)
model.compile(optimizer='adam', loss=custom_loss_function)
In the example above, I have no idea when or if the model is taking the batch sum or mean with tf.reduce_sum()
or tf.reduce_mean()
In another situation when we want to implement a custom training loop with a custom function, the template to follow according to Keras documentation is this
for epoch in range(epochs):
for step, (x_batch_train, y_batch_train) in enumerate(train_dataset):
with tf.GradientTape() as tape:
y_batch_pred = model(x_batch_train, training=True)
loss_value = custom_loss_function(y_batch_train, y_batch_pred)
grads = tape.gradient(loss_value, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
So by the book, if I understand correctly, we are supposed to take the mean of the batch gradients. Therefore, the loss value above should be a single value per batch.
However, the example will work with both of the following variations:
tf.reduce_mean(squared_difference, axis=-1) # array of loss for each sample
tf.reduce_mean(squared_difference) # mean loss for batch
So, why does the first option (array loss) above still work? Is apply_gradients
applying small changes for each value sequentially? Is this wrong although it works?
What is the correct way without a custom loop, and with a custom loop?