Here is a dummy example of the DF I'm working with ('ETC' represents several columns):
df = pd.DataFrame(data={'PlotCode':['A','A','A','A','B','B','B','C','C'],
'INVYR':[2000,2000,2000,2005,1990,2000,1990,2005,2001],
'ETC':['a','b','c','d','e','f','g','h','i']})
picture of df (sorry not enough reputation yet)
And here is what I want to end up with:
df1 = pd.DataFrame(data={'PlotCode':['A','A','A','B','B','C'],
'INVYR':[2000,2000,2000,1990,1990,2001],
'ETC':['a','b','c','e','g','i']})
NOTE: I want ALL rows with minimum 'INVYR' values for each 'PlotCode', not just one or else I'm assuming I could do something easier with drop_duplicates and sort.
So far, following the answer here Appending pandas dataframes generated in a for loop I've tried this with the following code:
df1 = []
for i in df['PlotCode'].unique():
j = df[df['PlotCode']==i]
k = j[j['INVYR']==j['INVYR'].min()]
df1.append(k)
df1 = pd.concat(df1)
This code works but is very slow, my actual data contains some 40,000 different PlotCodes so this isn't a feasible solution. Does anyone know some smooth filtering way of doing this? I feel like I'm missing something very simple.
Thank you in advance!