In Python, what is the best way to compute the difference between two lists?
example
A = [1,2,3,4]
B = [2,5]
A - B = [1,3,4]
B - A = [5]
In Python, what is the best way to compute the difference between two lists?
example
A = [1,2,3,4]
B = [2,5]
A - B = [1,3,4]
B - A = [5]
If the order does not matter, you can simply calculate the set difference:
>>> set([1,2,3,4]) - set([2,5])
set([1, 4, 3])
>>> set([2,5]) - set([1,2,3,4])
set([5])
Use set
if you don't care about items order or repetition. Use list comprehensions if you do:
>>> def diff(first, second):
second = set(second)
return [item for item in first if item not in second]
>>> diff(A, B)
[1, 3, 4]
>>> diff(B, A)
[5]
>>>
You can do a
list(set(A)-set(B))
and
list(set(B)-set(A))
One liner:
diff = lambda l1,l2: [x for x in l1 if x not in l2]
diff(A,B)
diff(B,A)
Or:
diff = lambda l1,l2: filter(lambda x: x not in l2, l1)
diff(A,B)
diff(B,A)
The above examples trivialized the problem of calculating differences. Assuming sorting or de-duplication definitely make it easier to compute the difference, but if your comparison cannot afford those assumptions then you'll need a non-trivial implementation of a diff algorithm. See difflib in the python standard library.
#! /usr/bin/python2
from difflib import SequenceMatcher
A = [1,2,3,4]
B = [2,5]
squeeze=SequenceMatcher( None, A, B )
print "A - B = [%s]"%( reduce( lambda p,q: p+q,
map( lambda t: squeeze.a[t[1]:t[2]],
filter(lambda x:x[0]!='equal',
squeeze.get_opcodes() ) ) ) )
Or Python3...
#! /usr/bin/python3
from difflib import SequenceMatcher
from functools import reduce
A = [1,2,3,4]
B = [2,5]
squeeze=SequenceMatcher( None, A, B )
print( "A - B = [%s]"%( reduce( lambda p,q: p+q,
map( lambda t: squeeze.a[t[1]:t[2]],
filter(lambda x:x[0]!='equal',
squeeze.get_opcodes() ) ) ) ) )
Output:
A - B = [[1, 3, 4]]
Python 2.7.3 (default, Feb 27 2014, 19:58:35) - IPython 1.1.0 - timeit: (github gist)
def diff(a, b):
b = set(b)
return [aa for aa in a if aa not in b]
def set_diff(a, b):
return list(set(a) - set(b))
diff_lamb_hension = lambda l1,l2: [x for x in l1 if x not in l2]
diff_lamb_filter = lambda l1,l2: filter(lambda x: x not in l2, l1)
from difflib import SequenceMatcher
def squeezer(a, b):
squeeze = SequenceMatcher(None, a, b)
return reduce(lambda p,q: p+q, map(
lambda t: squeeze.a[t[1]:t[2]],
filter(lambda x:x[0]!='equal',
squeeze.get_opcodes())))
Results:
# Small
a = range(10)
b = range(10/2)
timeit[diff(a, b)]
100000 loops, best of 3: 1.97 µs per loop
timeit[set_diff(a, b)]
100000 loops, best of 3: 2.71 µs per loop
timeit[diff_lamb_hension(a, b)]
100000 loops, best of 3: 2.1 µs per loop
timeit[diff_lamb_filter(a, b)]
100000 loops, best of 3: 3.58 µs per loop
timeit[squeezer(a, b)]
10000 loops, best of 3: 36 µs per loop
# Medium
a = range(10**4)
b = range(10**4/2)
timeit[diff(a, b)]
1000 loops, best of 3: 1.17 ms per loop
timeit[set_diff(a, b)]
1000 loops, best of 3: 1.27 ms per loop
timeit[diff_lamb_hension(a, b)]
1 loops, best of 3: 736 ms per loop
timeit[diff_lamb_filter(a, b)]
1 loops, best of 3: 732 ms per loop
timeit[squeezer(a, b)]
100 loops, best of 3: 12.8 ms per loop
# Big
a = xrange(10**7)
b = xrange(10**7/2)
timeit[diff(a, b)]
1 loops, best of 3: 1.74 s per loop
timeit[set_diff(a, b)]
1 loops, best of 3: 2.57 s per loop
timeit[diff_lamb_filter(a, b)]
# too long to wait for
timeit[diff_lamb_filter(a, b)]
# too long to wait for
timeit[diff_lamb_filter(a, b)]
# TypeError: sequence index must be integer, not 'slice'
@roman-bodnarchuk list comprehensions function def diff(a, b) seems to be faster.
A = [1,2,3,4]
B = [2,5]
#A - B
x = list(set(A) - set(B))
#B - A
y = list(set(B) - set(A))
print x
print y
In case you want the difference recursively going deep into items of your list, I have written a package for python: https://github.com/erasmose/deepdiff
Install from PyPi:
pip install deepdiff
If you are Python3 you need to also install:
pip install future six
>>> from deepdiff import DeepDiff
>>> from pprint import pprint
>>> from __future__ import print_function
Same object returns empty
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = t1
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{}
Type of an item has changed
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:"2", 3:3}
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{'type_changes': ["root[2]: 2=<type 'int'> vs. 2=<type 'str'>"]}
Value of an item has changed
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:4, 3:3}
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{'values_changed': ['root[2]: 2 ====>> 4']}
Item added and/or removed
>>> t1 = {1:1, 2:2, 3:3, 4:4}
>>> t2 = {1:1, 2:4, 3:3, 5:5, 6:6}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes)
{'dic_item_added': ['root[5, 6]'],
'dic_item_removed': ['root[4]'],
'values_changed': ['root[2]: 2 ====>> 4']}
String difference
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world"}}
>>> t2 = {1:1, 2:4, 3:3, 4:{"a":"hello", "b":"world!"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'values_changed': [ 'root[2]: 2 ====>> 4',
"root[4]['b']:\n--- \n+++ \n@@ -1 +1 @@\n-world\n+world!"]}
>>>
>>> print (ddiff.changes['values_changed'][1])
root[4]['b']:
---
+++
@@ -1 +1 @@
-world
+world!
String difference 2
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world!\nGoodbye!\n1\n2\nEnd"}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n1\n2\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'values_changed': [ "root[4]['b']:\n--- \n+++ \n@@ -1,5 +1,4 @@\n-world!\n-Goodbye!\n+world\n 1\n 2\n End"]}
>>>
>>> print (ddiff.changes['values_changed'][0])
root[4]['b']:
---
+++
@@ -1,5 +1,4 @@
-world!
-Goodbye!
+world
1
2
End
Type change
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n\n\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'type_changes': [ "root[4]['b']: [1, 2, 3]=<type 'list'> vs. world\n\n\nEnd=<type 'str'>"]}
List difference
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'list_removed': ["root[4]['b']: [3]"]}
List difference 2: Note that it DOES NOT take order into account
>>> # Note that it DOES NOT take order into account
... t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 3, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ }
List that contains dictionary:
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:1, 2:2}]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:3}]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'dic_item_removed': ["root[4]['b'][2][2]"],
'values_changed': ["root[4]['b'][2][1]: 1 ====>> 3"]}
most simple way,
use set().difference(set())
list_a = [1,2,3]
list_b = [2,3]
print set(list_a).difference(set(list_b))
answer is set([1])
In case of a list of dictionaries, the full list comprehension solution works while the set
solution raises
TypeError: unhashable type: 'dict'
def diff(a, b):
return [aa for aa in a if aa not in b]
d1 = {"a":1, "b":1}
d2 = {"a":2, "b":2}
d3 = {"a":3, "b":3}
>>> diff([d1, d2, d3], [d2, d3])
[{'a': 1, 'b': 1}]
>>> diff([d1, d2, d3], [d1])
[{'a': 2, 'b': 2}, {'a': 3, 'b': 3}]
There are 3 options for doing this, two of which are acceptable and one of which should not be done.
The 3 options, at a high level, are:
Option 3) should never be chosen over option 2). Depending on the needs of your application, you may prefer option 1) or 2), while 2) is likely the preferred approach in most use cases. 2) is very similar to the performance of 1) since both have O(m + n)
time complexity. By contrast, 2) has marginal benefits in space complexity over 1) and maintains both the order of the original list and any duplications in the original list.
If you want to remove duplications and do not care about the order, then 1) is likely the best fit for you.
import time
def fun1(l1, l2):
# Order and duplications in l1 are both lost, O(m) + O(n)
return set(l1) - set(l2)
def fun2(l1, l2):
# Order and duplications in l1 are both preserved, O(m) + O(n)
l2_set = set(l2)
return [item for item in l1 if item not in l2_set]
def fun3(l1, l2):
# Order and duplications in l1 are both preserved, O(m * n)
# Don't do
return [item for item in l1 if item not in l2]
A = list(range(7500))
B = list(range(5000, 10000))
loops = 100
start = time.time()
for _ in range(loops):
fun1(A, B)
print(f"fun1 time: {time.time() - start}")
start = time.time()
for _ in range(loops):
fun2(A, B)
print(f"fun2 time: {time.time() - start}")
start = time.time()
for _ in range(loops):
fun3(A, B)
print(f"fun3 time: {time.time() - start}")
fun1 time: 0.03749704360961914
fun2 time: 0.04109621047973633
fun3 time: 32.55076885223389
Simple code that gives you the difference with multiple items if you want that:
a=[1,2,3,3,4]
b=[2,4]
tmp = copy.deepcopy(a)
for k in b:
if k in tmp:
tmp.remove(k)
print(tmp)
If your order does not matter and both sets can be hashed, you can use a Symmetric Difference across the sets.
This will return the values that appear in either set A or set B, but not both.
For example, the question shows the return of either difference performed on list A and list B.
If we were to (cast both lists to sets and) perform a symmetric difference instead, we would get a merged result of the two in a single operation.
A = [1,2,3,4]
B = [2,5]
print(set(A) ^ set(B)
# {1, 3, 4, 5}
Adding this answer as I have not seen symmetric difference provided in the existing answers yet
Adding an answer to take care of the case where we want a strict difference with repetitions, i.e., there are repetitions in the first list that we want to keep in the result. e.g. to get,
[1, 1, 1, 2] - [1, 1] --> [1, 2]
We could use an additional counter to have an elegant difference function.
from collections import Counter
def diff(first, second):
secondCntr = Counter(second)
second = set(second)
res = []
for i in first:
if i not in second:
res.append(i)
elif i in secondCntr:
if secondCntr[i] > 0:
secondCntr[i] -= 1
else:
res.append(i)
return res
I don't see a solution in this thread that preserves duplication in A. When an element of A matches with an element of B, this element has to be removed in B so that when the same element occurs again in A, it has to appear in the difference if this element appears only once in B.
def diff(first, second):
l2 = list(second)
l3 = []
for el in first:
if el in l2:
l2.remove(el)
else:
l3 += [el]
return l3
l1 = [1, 2, 1, 3, 4]
l2 = [1, 2, 3, 3]
diff(l1, l2)
>>> [1, 4]
When having a look at TimeComplexity of In-operator, in worst case it works with O(n). Even for Sets.
So when comparing two arrays we'll have a TimeComplexity of O(n) in best case and O(n^2) in worst case.
An alternative (but unfortunately more complex) solution, which works with O(n) in best and worst case is this one:
# Compares the difference of list a and b
# uses a callback function to compare items
def diff(a, b, callback):
a_missing_in_b = []
ai = 0
bi = 0
a = sorted(a, callback)
b = sorted(b, callback)
while (ai < len(a)) and (bi < len(b)):
cmp = callback(a[ai], b[bi])
if cmp < 0:
a_missing_in_b.append(a[ai])
ai += 1
elif cmp > 0:
# Item b is missing in a
bi += 1
else:
# a and b intersecting on this item
ai += 1
bi += 1
# if a and b are not of same length, we need to add the remaining items
for ai in xrange(ai, len(a)):
a_missing_in_b.append(a[ai])
return a_missing_in_b
e.g.
>>> a=[1,2,3]
>>> b=[2,4,6]
>>> diff(a, b, cmp)
[1, 3]