I have a problem: I have two distinct equations, one is a linear equation, the other one is an exponential equation. However not both equations should be valid at the same time, meaning that there are two distinct regimes.
Equation 1 (x < a): E*x
Equation 2 (x >=a): a+b*x+c*(1-np.exp(-d*np.array(x)))
Meaning the first part of the data should just be fit with a linear equation and the rest should be fit with the before mentioned equation 2.
The data I'm trying to fit looks like this (I have also added some sample data, if people wanna have a go):
I have tried several thing already, from just defining one fit function with a heaviside function:
def fit_fun(x,a,b,c,d,E):
funktion1=E*np.array(x)
funktion2=a+b*x+c*(1-np.exp(-d*np.array(x)))
return np.heaviside(x+a,0)*funktion2+(1-np.heaviside(x+a,0))*funktion1
defining a piecewise function:
def fit_fun(x,a,b,c,d,E):
return np.piecewise(x, [x <= a, x > a], [lambda x: E*np.array(x), lambda x: a+b*x+c*(1-np.exp(-d*np.array(x)))])
to lastly (which unforunattly yields me some form function error?):
def plast_fun(x,a,b,c,d,E):
out = E*x
out [np.where(x >= a)] = a+b*x+c*(1-np.exp(-d+x))
return out
Don't get me wrong I do get "some" fits, but they do seem to either take one or the other equation and not really use both. I also tried using several bounds and inital guesses, but it never changes.
Any input would be greatly appreciated!
Data:
0.000000 -1.570670
0.000434 83.292677
0.000867 108.909402
0.001301 124.121676
0.001734 138.187659
0.002168 151.278839
0.002601 163.160478
0.003035 174.255626
0.003468 185.035092
0.003902 195.629820
0.004336 205.887161
0.004769 215.611995
0.005203 224.752083
0.005636 233.436680
0.006070 241.897851
0.006503 250.352697
0.006937 258.915168
0.007370 267.569337
0.007804 276.199005
0.008237 284.646778
0.008671 292.772349
0.009105 300.489611
0.009538 307.776858
0.009972 314.666291
0.010405 321.224211
0.010839 327.531594
0.011272 333.669261
0.011706 339.706420
0.012139 345.689265
0.012573 351.628362
0.013007 357.488150
0.013440 363.185771
0.013874 368.606298
0.014307 373.635696
0.014741 378.203192
0.015174 382.315634
0.015608 386.064126
0.016041 389.592120
0.016475 393.033854
0.016908 396.454226
0.017342 399.831519
0.017776 403.107084
0.018209 406.277016
0.018643 409.441119
0.019076 412.710982
0.019510 415.987331
0.019943 418.873140
0.020377 421.178098
0.020810 423.756827
So far I have found these two questions, but I could't figure it out: Fit of two different functions with boarder as fit parameter Fit a curve for data made up of two distinct regimes