In a C99 program, under the (theoretical) assumption that I'm not using variable-length arrays, and each of my automatic variables can only exist once at a time in the whole stack (by forbidding circular function calls and explicit recursion), if I sum up all the space they are consuming, could I declare that this is the maximal stack size that can ever happen?
No, because of function pointers..... Read n1570.
Consider the following code, where rand(3) is some pseudo random number generator (it could also be some input from a sensor) :
typedef int foosig(int);
int foo(int x) {
foosig* fptr = (x>rand())?&foo:NULL;
if (fptr)
return (*fptr)(x);
else
return x+rand();
}
An optimizing compiler (such as some recent GCC suitably invoked with enough optimizations) would make a tail-recursive call for (*fptr)(x)
. Some other compiler won't.
Depending on how you compile that code, it would use a bounded stack or could produce a stack overflow. With some ABI and calling conventions, both the argument and the result could go thru a processor register and won't consume any stack space.
Experiment with a recent GCC (e.g. on Linux/x86-64, some GCC 10 in 2020) invoked as gcc -O2 -fverbose-asm -S foo.c
then look inside foo.s
. Change the -O2
to a -O0
.
Observe that the naive recursive factorial function could be compiled into some iterative machine code with a good enough C compiler and optimizer. In practice GCC 10 on Linux compiling the below code:
int fact(int n)
{
if (n<1) return 1;
else return n*fact(n-1);
}
as gcc -O3 -fverbose-asm tmp/fact.c -S -o tmp/fact.s
produces the following assembler code:
.type fact, @function
fact:
.LFB0:
.cfi_startproc
endbr64
# tmp/fact.c:3: if (n<1) return 1;
movl $1, %eax #, <retval>
testl %edi, %edi # n
jle .L1 #,
.p2align 4,,10
.p2align 3
.L2:
imull %edi, %eax # n, <retval>
subl $1, %edi #, n
jne .L2 #,
.L1:
# tmp/fact.c:5: }
ret
.cfi_endproc
.LFE0:
.size fact, .-fact
.ident "GCC: (Ubuntu 10.2.0-5ubuntu1~20.04) 10.2.0"
And you can observe that the call stack is not increasing above.
If you have serious and documented arguments against GCC, please submit a bug report.
BTW, you could write your own GCC plugin which would choose to randomly apply or not such an optimization. I believe it stays conforming to the C standard.
The above optimization is essential for many compilers generating C code, such as Chicken/Scheme or Bigloo.
A related theorem is Rice's theorem. See also this draft report funded by the CHARIOT project.
See also the Compcert project.