I have the following data frame:
import pandas as pd
pandas_df = pd.DataFrame([
["SEX", "Male"],
["SEX", "Female"],
["EXACT_AGE", None],
["Country", "Afghanistan"],
["Country", "Albania"]],
columns=['FullName', 'ResponseLabel'
])
Now what I need to do is to add sort order to this dataframe. Each new "FullName" would increment it by 100 and each consecutive "ResponseLabel" for a given "FullName" would increment it by 1 (for this specific "FullName"). So I basically create two different sort orders that I sum later on.
pandas_full_name_increment = pandas_df[['FullName']].drop_duplicates()
pandas_full_name_increment = pandas_full_name_increment.reset_index()
pandas_full_name_increment.index += 1
pandas_full_name_increment['SortOrderFullName'] = pandas_full_name_increment.index * 100
pandas_df['SortOrderResponseLabel'] = pandas_df.groupby(['FullName']).cumcount() + 1
pandas_df = pd.merge(pandas_df, pandas_full_name_increment, on = ['FullName'], how = 'left')
Result:
FullName ResponseLabel SortOrderResponseLabel index SortOrderFullName SortOrder
0 SEX Male 1 0 100 101
1 SEX Female 2 0 100 102
2 EXACT_AGE NULL 1 2 200 201
3 Country Afghanistan 1 3 300 301
4 Country Albania 2 3 300 302
The result that I get on my "SortOrder" column is correct but I wonder if there is some better approach pandas-wise?
Thank you!